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ABSTRACT: In early 2020, two unique events perturbed ship
emissions of pollutants around Southern China, proffering insights
into the impacts of ship emissions on regional air quality: the
decline of ship activities due to COVID-19 and the global
enforcement of low-sulfur (<0.5%) fuel oil for ships. In January and
February 2020, estimated ship emissions of NOx, SO2, and primary
PM2.5 over Southern China dropped by 19, 71, and 58%,
respectively, relative to the same period in 2019. The decline of
ship NOx emissions was mostly over the coastal waters and inland
waterways of Southern China due to reduced ship activities. The
decline of ship SO2 and primary PM2.5 emissions was most
pronounced outside the Chinese Domestic Emission Control Area
due to the switch to low-sulfur fuel oil there. Ship emission
reductions in early 2020 drove 16 to 18% decreases in surface NO2 levels but 3.8 to 4.9% increases in surface ozone over Southern
China. We estimated that ship emissions contributed 40% of surface NO2 concentrations over Guangdong in winter. Our results
indicated that future abatements of ship emissions should be implemented synergistically with reductions of land-borne
anthropogenic emissions of nonmethane volatile organic compounds to effectively alleviate regional ozone pollution.
KEYWORDS: ship emissions, COVID-19 pandemic, low-sulfur fuel oil, air quality

1. INTRODUCTION
The coastal waters and inland waterways of Southern China
are among the busiest areas for ship activities in the world. In
2020, the three major ports (Shenzhen, Guangzhou, and Hong
Kong) in the Pearl River Delta (PRD) area of Southern China
handled a total container throughput of 68 million twenty-foot
equivalent units (TEUs), accounting for 8.9% of the global
port container traffic.1,2 The inland waterway throughput along
the Pearl River in 2018 was 7.0 million TEUs, making up 24%
of China’s annual throughput of inland ports.3 Furthermore,
the number of registered motorized fishing boats in
Guangdong province exceeded 54,000, 12% of China’s fishing
fleet in 2019.4 As a result, ship emissions constitute an
important source of air pollutants in Southern China,
particularly given China’s recent efforts to reduce land-borne
anthropogenic pollutant emissions.5−7 In 2019, ship emissions
were responsible for 35, 28, and 35% of Hong Kong’s
estimated total anthropogenic emissions of NOx (NOx = NO +
NO2), SO2, and primary PM2.5, respectively.

8 Early observa-
tions showed that prior to recent abatement of land-borne
emissions, ship emissions contributed 5 to 18% of the surface
PM2.5 concentrations in the PRD between 2009 and 2015.9−11

However, the current impact of ship emissions on air quality in
Southern China is unclear, partly due to the difficulty in
discerning the impacts of ship emissions in the presence of
land-borne pollutants.
In January and February 2020, two events caused abrupt

changes in ship emissions of pollutants over the inland and
coastal waters of Southern China, providing a unique
opportunity to assess the impacts of ship emissions on air
quality in the region. The first event was the worldwide
curtailment of human activity levels due to coronavirus disease-
2019 (COVID-19). Many studies have shown how the
lockdown measures adopted by Chinese cities to contain the
spread of COVID-19 led to sharp decreases in land-borne
anthropogenic pollutant emissions and changes in urban air
quality.12−19 During the nationwide lockdown period in early
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2020, the national mean urban concentrations of surface PM2.5,
NO2, and SO2 were 14, 16, and 12% lower than the
concentrations during the same period in 2019, respectively.18

In contrast, the national mean urban surface ozone
concentrations were 9% higher during the lockdown period
in 2020 compared to the same period in 2019, reflecting the
nonlinear response of ozone photochemistry to its precur-
sors.18 Several studies have investigated how COVID-19
restrictions led to declined ship activities and emissions
around the Yangtze River Delta and Eastern China.20,21

However, the changes in ship emissions due to the COVID-19
crisis and their impacts on regional air quality in Southern
China have not been quantified.
The second event that affected ship emissions was the

International Maritime Organization (IMO)’s mandate of low-
sulfur content (<0.5%) in ship fuel oil, which became effective
worldwide on January 1, 2020.22 The sulfur contents of the fuel
oil are proportional to the emission factors of SO2 and PM2.5
from ships.23,24 Since 2019, China has enforced the use of low-
sulfur (<0.5%) fuel oil (LSFO) for vessels operating within the
Chinese Domestic Emission Control Area (CDECA),25 which
included the inland waterways of the Yangtze and Pearl Rivers
and a 12 nautical mile width zone along the Chinese coastline.
Previous studies estimated that the use of LSFO within the
CDECA would moderately lower the surface SO2 and PM2.5
concentrations over the PRD area by approximately 10 and
3%, respectively,26,27 but those assessments were based on
land-borne and ship emissions prior to the year 2015. The
abrupt changes in ship emissions in early 2020 provide an
opportunity to evaluate the effectiveness of the CDECA under
present-day land-borne and ship emissions as well as the
potential benefits of further reducing pollutant emissions
within and outside the CDECA.
In this work, we quantified the changes in land-borne and

ship emissions of pollutants over Southern China during early
2020 as a result of the decline of human activities associated
with COVID-19 and the IMO’s global enforcement of LSFO.
We used a regional air quality model to conduct sensitivity
simulations and assessed the impacts of ship emissions on
present-day air quality in Southern China, with the goal of
informing future ship emission policies for the betterment of
air quality in this region.

2. METHODS
2.1. Anthropogenic Pollutant Emissions over South-

ern China during Early 2019 and 2020. We quantified the
emissions of pollutants from ships in and around Southern
China during January and February 2019 (“ShipEmis-2019”
emissions) and 2020 (“ShipEmis-2020” emissions). Using the
methods described in Fan et al.23 and Yuan et al.,28 we
estimated the monthly ship emissions of SO2, NOx, CO, total
nonmethane volatile organic compounds (NMVOCs), and
primary PM2.5 (including primary elemental carbon and
organic aerosols, and primary noncarbonaceous aerosols)
over East and South China Seas and the inland waterways of
Southern China at a 0.1° resolution. Ship activity data were
obtained from the dynamic monitoring of vessel tracks using
the automatic identification system (AIS).29 For 2019, we
assumed that the sulfur contents of ship fuel oil were 0.5%
within the CDECA and 2.7% elsewhere.25,30 For 2020, we
assumed that the sulfur contents of ship fuel oil were 0.5%
everywhere, in accordance with the IMO’s global LSFO
mandate.22 A recent observational study demonstrated that
desulfurized heavy fuel oil is being used extensively around the
PRD area to comply with the CDECA regulations.31 There has
not yet been a detailed investigation into the compliance of the
IMO’s LSFO mandate beyond the CDECA since 2020.
However, the IMO’s Global Integrated Shipping Information
System32 reported only 7 and 55 cases of nonavailability of
compliant fuel oil in China and worldwide, respectively,
throughout the year 2020. This small number of reports of
ships encountering difficulty in obtaining compliant fuel
provided evidence for the effective enforcement of the
IMO’s global LSFO policy. We assumed that the reduction
of sulfur content in ship fuel oil proportionally decreased ship
emissions of both SO2 and primary PM2.5,

23 supported by field
observations.26,33,34 We mapped the total NMVOC emissions
to individual species using the emission profiles of the
transportation sector (Table S1) in the Multiresolution
Emission Inventory for China (MEIC) inventory.35

Land-based anthropogenic emissions in China were taken
from the MEIC inventory,36 which was originally developed
for 2017 at a resolution of 0.25°. The inventory included
emissions from power generation, industry, transportation
(except ships), residential activities, and agriculture.37 We first

Figure 1. Spatial distributions of monthly mean ship emissions of (a,b) NOx and (d,e) SO2 during January and February of 2019 (left column) and
2020 (center column). Also shown are the percent changes of monthly mean ship emissions of (c) NOx and (f) SO2 in early 2020 relative to those
in early 2019.
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scaled the MEIC monthly emissions from 2017 to 2019 levels
(referred to as “MEIC-2019”) using national monthly
statistics13 (Table S2). We then estimated China’s land-
based anthropogenic emissions in January and February 2020
(referred to as “MEIC-2020”) using monthly provincial and
sectorial activity strength ratios relative to 2019.13 Agricultural
NH3 emissions were held at their 2017 levels. Overall, the
reduction in human activities due to COVID-19 lockdowns led
to decreases of 11 and 38% (Figure S1 and Table S3) in land-
based anthropogenic NOx emissions over Southern China
(domain shown in Figure 1) during January and February
2020, respectively, compared to the same months in 2019.
We further scaled the monthly provincial land-borne

anthropogenic NOx emissions in MEIC-2020 using the day-
to-day variability of NOx emissions in January and February
2020, which was derived from the TROPOspheric Monitoring
Instrument (TROPOMI) tropospheric NO2 column concen-
tration retrievals.12 This satellite-based constraint reflected the
temporal variability of land-borne NOx emissions affected by
both the COVID-19 lockdowns and Chinese New Year. Daily
NOx emissions over Southern China gradually dropped in early
January (Figure S2), reflecting the waning socioeconomic
activities leading up to Chinese New Year (January 25, 2020).
COVID-related lockdowns were observed in Hubei Province
on January 23, 2020. Within a few days, most Chinese
provinces had started enforcing restrictions on socioeconomic
activities. Consequently, daily land-borne NOx emissions were
9 to 37% below the monthly mean emissions during January 23
to February 9, 2020. In most Southern Chinese provinces,
socioeconomic activities resumed after February 9, and daily
land-borne NOx emissions gradually returned to the monthly
mean levels (Figure S2). For other land-borne anthropogenic
pollutants, little information was available on their daily
variation of emissions; we assumed that the daily emission
rates between January 1 and 22, 2020 were the same as the
monthly mean rates in January 2019 and that all emission
reductions in January 2020 occurred between January 23 and
31, 2020. Daily emissions of land-borne anthropogenic
pollutants (except NOx) recovered to the monthly mean
levels in February 2020.

2.2. WRF-GC Model Simulations. We used the WRF-GC
model (v2.0, doi:10.5281/zenodo.4395258)38−40 to simulate
air quality over Southern China during January and February
2020. WRF-GC v2.0 is an online coupling of the Weather
Research and Forecasting meteorological model (WRF,
v3.9.1.1, https://github.com/NCAR/WRFV3/releases/tag/
V3.9.1.1)41,42 and the GEOS-Chem chemical transport
model (v12.8.2, doi:10.5281/zenodo.3837666).43 The model
includes a detailed Ox-NOx-VOC-halogen-aerosol chemical
mechanism.44−46 We used two nested model domains with
horizontal resolutions of 27 and 9 km (Figure S3a),
respectively, and 50 vertical layers. Initial and boundary
conditions for meteorological variables were obtained from the
National Centers for Environmental Prediction Final (NCEP
FNL) dataset with a resolution of 1° (doi:10.5065/
D6M043C6).47 Chemical initial and boundary conditions
were from a GEOS-Chem global simulation.39 Details of other
model configurations are summarized in Table S4. All
simulations were conducted for January 1 and February 29,
2020; the first 4 days spun up the model. We divided the
simulation into three periods for analyses: P1 (pre-lockdown
period between January 5 and 22, 2020), P2 (lockdown period

between January 23 and February 9, 2020), and P3 (post-
lockdown period between February 10 and 29, 2020).
We conducted three sensitivity experiments with different

combinations of ship- and land-borne emissions (Table 1).

The “ALL20” experiment was driven by our estimated land-
borne and ship emissions for early 2020 (MEIC-2020 and
ShipEmis-2020 inventories), affected by the restricted human
activities during COVID-19 and the IMO global regulations.
The “ALL19” simulation was driven by ship- and land-borne
emissions from 2019 (MEIC-2019 and ShipEmis-2019
inventories) to represent regional air quality without the
impacts of the COVID-19 restrictions and the IMO global
regulations. The “SHIP19” experiment used land-borne
emissions for 2020 (MEIC-2020) and ship emissions from
2019 (ShipEmis-2019). The differences between the ALL20
and SHIP19 simulations demonstrated the impacts of ship
emission changes in early 2020 on air quality (Section 3.3).

2.3. Surface and Satellite Observations of Air Quality
over Southern China. We evaluated our simulations against
hourly surface pollutant measurements over Southern China
during January and February 2020, managed by the China
National Environmental Monitoring Centre (http://www.
cnemc.cn, last accessed: October 11, 2022) and the Hong
Kong Environmental Protection Department (http://epd.gov.
hk, last accessed: October 11, 2022). We applied a consistent
data quality control protocol to all surface measurements,48,49

excluded sites with less than 90% valid hourly measurements
during January and February 2000 and averaged the hourly
measurements onto the WRF-GC model grids for comparison
with the simulations. Overall, we used hourly surface
measurements from 85, 85, 86, and 77 sites for NO2, SO2,
ozone, and PM2.5, respectively, to evaluate our simulations.
We further analyzed the differences in tropospheric NO2

column concentrations observed by the TROPOMI satellite
instrument for the months of January and February between
2019 and 2020.50 TROPOMI is a nadir-viewing multispectral
spectrometer onboard the Sentinel-5 Precursor satellite, in a
sun-synchronous orbit that crosses the equator at 13:30 local
time.51 The Level 3 monthly gridded products used in this
analysis for 2019 and 2020 were derived by oversampling the
Sentinel-5P TROPOMI Tropospheric NO2 1-Orbit Level 2
data in Version 2 (S5P_L2__NO2____HiR)52 at a 0.05°
spatial resolution.14,53,54 The retrieval algorithm for 2019 and
2020 data was based on the Differential Optical Absorption
Spectroscopy (DOAS) technique and remained unchanged.55

Table 1. Configurations of WRF-GC Sensitivity Simulations

experiments ALL19 ALL20 SHIP19

land-borne
anthropogenic
emissions

MEIC-2019 MEIC-2020 MEIC-2020

ship emissions ShipEmis-2019 ShipEmis-2020 ShipEmis-2019
model version WRF-GC v2.0
simulation time January 1 to February 29, 2020
microphysics Morrison two-moment68

shortwave/longwave radiation RRTMG69

planetary boundary layer MYNN270

land surface Noah71,72

surface layer MM5 Monin-Obukhov73

cumulus parameterization New Tiedtke74−76

aerosol-cloud-radiation
interactions on
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3. RESULTS
3.1. Abrupt Changes in Ship Emissions of Pollutants

over Southern China in Early 2020. Figures 1 and S4 and
Tables 2 and S3 compare pollutant emissions from ships and

from land-borne anthropogenic sources over Southern China
(domain shown in Figure 1: 107.5° E to 122.1° E, 19.8° N to
26.4° N) in January and February of 2019 and 2020. In
January and February 2019, ship emissions of NOx, SO2, and
primary PM2.5 over Southern China were 189, 45, and 15 Gg,
respectively. Ship emissions constituted 51, 28, and 15% of the
total anthropogenic emissions of these pollutants over
Southern China, respectively. In January and February 2020,
ship emissions of NOx dropped by 36 Gg (−19%) relative to
the same period in 2019, which was comparable in magnitude
to the 40 Gg reduction in land-borne anthropogenic NOx
emissions over Southern China. The reduction of ship NOx
emissions in early 2020 were mainly due to the reduced ship
activities resulting from the COVID-19 pandemic and were
most pronounced along the Chinese coastline and the Pearl
River (Figure 1c). The switch to LSFO outside the CDECA
had little impact on the NOx emissions from ships. Our
estimated 19% reduction in ship NOx emissions in early 2020
relative to that in early 2019 was consistent with the reported
13% drop in container throughput at the three major ports in

Table 2. Ship Emissions of Pollutants over Southern China
(Domain in Figure 1: 107.5° E to 122.1° E, 19.8° N to 26.4°
N) in January and February of the Years 2019 and 2020

emissions (Gg
month−1) NOx SO2 CO

primary
PM2.5

a NMVOCs

Jan 2019 112 25 5.6 8.5 5.5
Feb 2019 77 20 3.8 6.5 3.7
Jan 2020 88 7.5 4.3 3.9 4.2
Feb 2020 65 5.6 3.2 2.5 3.1

relative changes (%) (Emis2020 − Emis2019)/Emis2019 × 100%

Jan −22% −70% −23% −54% −24%
Feb −16% −72% −16% −62% −16%

aTotal primary PM2.5 includes primary OC, EC, and noncarbona-
ceous aerosols.

Figure 2. Comparisons of the observed (symbols) and simulated (ALL20 simulation, filled contours) surface concentrations of (a−c) NO2, (d−f)
SO2, (g−i) PM2.5, and (j−l) maximum daily 8 h average (MDA8) ozone during P1 (left column), P2 (center column), and P3 (right column) in
early 2020.
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the PRD area (Guangzhou, Shenzhen, and Hong Kong) during
January and February 2020 relative to the same months in
2019 (Table S4).56−58

Ship emissions of SO2 over Southern China dropped by 32
Gg (−71%) in January and February 2020, relative to the same
period in 2019. This reduction was larger than the reductions
of the land-borne emissions of SO2 (24 Gg reduction, −21%).
Primary PM2.5 from ship emissions and land-borne emissions
dropped by 8.6 Gg (−57%) and 12 Gg (−12%), respectively.
Unlike the changes in ship NOx emissions, the reductions of
SO2 and primary PM2.5 emissions from ships in early 2020
were most pronounced outside the CDECA (areal average
−85 and −80%, respectively) (Figures 1f and S5i), reflecting
the impacts of the switch to LSFO outside the CDECA in
January 2020. Within the CDECA, ship emissions of SO2 and
primary PM2.5 were not affected by the IMO’s new policy
because of the existing LSFO regulations. However, ship
emissions of both SO2 and primary PM2.5 still decreased by
20% as a result of the reduced ship activities in early 2020.
The spatial distributions and relative reductions of CO and

NMVOC ship emissions in early 2020 were similar to those of
NOx ship emissions (see Figures S5). These emission changes
were mainly affected by the COVID-19-related decline in ship
activities. However, land-borne anthropogenic sources domi-
nated the total anthropogenic emissions of these species over
Southern China, rendering ship emissions relatively unim-

portant for the ambient concentrations of these air pollutants
over this region during the winter (Figure S4).

3.2. Evaluation of Simulated Concentrations of
Surface Air Pollutants over Southern China during
Early 2020. Figure 2 and Table S5 compare our simulated
(ALL20 simulation) surface concentrations of NO2, SO2, total
PM2.5 (including both primary and secondary PM2.5) and
maximum daily 8 h average (MDA8) ozone during the three
stages of COVID-19 lockdown in 2020 against surface
observations. During P2 and P3, the mean observed
concentrations of NO2 over Southern China were 20 ± 24
and 23 ± 14 μg m−3, respectively. These values were 46 and
38% lower than the mean observed NO2 concentrations before
the lockdown (P1, 37 ± 18 μg m−3), respectively. The largest
observed decreases in NO2 concentrations were over the
megacities in the PRD area, reflecting the large decrement of
land-borne NOx emissions from traffic and industrial sources
due to the COVID-19 lockdowns. The ALL20 simulation
reproduced the observed NO2 concentrations during P1 [34 ±
16 μg m−3; normalized mean bias (NMB) against observations
= −8.3%] and the relative decreases of NO2 concentrations in
P2 (20 ± 10 μg m−3, NMB = −3.9%) and P3 (28 ± 13 μg m−3,
NMB = 18%). Given that the changes of NOx emissions from
ships and land-borne sources were comparable in magnitude in
early 2020, and that the reductions of ship emissions of NO2
were mostly along the inland waterways and coastline, our

Figure 3. Simulated impacts on surface pollutant concentrations due to the changes of ship emissions during P1 (left column), P2 (center column),
and P3 (right column) in early 2020: (a−c) NO2, (d−f) MDA8 ozone, (g−i) SO2, and (j−l) PM2.5. For each pollutant, the impacts were quantified
as the concentration differences between the ALL20 and SHIP19 experiments, relative to the concentrations in the ALL19 experiment.
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ability to simulate the observed changes in NOx concentrations
at the surface sites as shown in Figure 2 provided confidence in
our estimated changes in ship emissions of NOx.
Our simulated mean surface SO2 and PM2.5 concentrations

were consistent with the surface measurements during P2
(SO2: NMB = 5.0%; PM2.5: NMB = 17%) and P3 (SO2: NMB
= 18%; PM2.5: NMB = −19%). Our simulation overestimated
the observed surface SO2 (NMB = 39%) and PM2.5 (NMB =
29%) concentrations during P1, potentially indicating an
overestimation of the land-borne anthropogenic emissions of
SO2 from the MEIC-2020 and the transport of PM2.5 from
inland China.59

Surface ozone concentrations were also affected by abrupt
emission changes over Southern China in early 2020. Mean
observed surface MDA8 ozone concentrations at Southern
Chinese sites during P1, P2, and P3 were 84 ± 15, 70 ± 10,
and 82 ± 12 μg m−3, respectively. Relative to P1, the observed
MDA8 ozone concentrations decreased most significantly
during P2 (−20%) over the minor cities in Northern and
Eastern Guangdong, away from the PRD megacities and the
coastline. Over the PRD megacities and along the coastline and
the Pearl River, the observed decreases in MDA8 ozone were
milder (−16%). These spatial differences in the response of
ozone to precursor emission changes were consistent with
previous analyses that showed, over Southern China in winter,
that the photochemical production of surface ozone in the
PRD megacities was in the “NOx-saturated” or the “transi-
tional” regimes. In these regimes, a decrease in local NOx
emissions would slow the removal of HOx radicals or reduce
the titration of ozone by NO, thereby increasing local ozone
concentrations.59,60 The photochemical production of surface

ozone outside the PRD were more “NOx-limited”, such that
reduction of local NOx emission would slow the local
photochemical production of ozone.59,60

The ALL20 simulation reproduced the mean observed
surface MDA8 ozone concentrations over Southern China sites
during P1 (85 ± 13 μg m−3, NMB = 0.6%) and P3 (86 ± 11
μg m−3, NMB = 4.6%), but the ALL20 simulation over-
estimated the observed MDA8 ozone during P2 (84 ± 8.1 μg
m−3, NMB = 19%). However, the simulated biases were mostly
over rural areas in Northern and Eastern Guangdong. Over
sites along the coast and the Pearl River, which were most
affected by ship emissions, the simulated MDA8 ozone
concentration during P2 was 82 ± 7.4 μg m−3, which was
more consistent with the observations in this area (76 ± 8.0 μg
m−3, NMB = 8%).

3.3. Impacts of Ship Emission Changes on Surface Air
Quality over Southern China. The evaluation above shows
that the ALL20 simulation generally reproduced the observed
surface concentrations of major air pollutants over Southern
China and their relative temporal changes during three periods
in early 2020. On that basis, we compared the differences in
surface pollutant concentrations between the ALL20 and
SHIP19 simulations relative to the ALL19 simulations (Figure
3) to quantify the impacts on regional air quality due to ship
emission changes in early 2020. All simulations were for 2020,
but the SHIP19 simulation was driven by ship emissions in
2019 (ShipEmis-2019 inventory).
Relative to ship emissions in 2019, ship emission changes in

early 2020 led to 8.6 to 10% (0.8 to 1.2 μg m−3) decreases in
the mean simulated surface NO2 concentrations over Southern
China during the three periods in early 2020. The simulated

Figure 4. Box plots of the simulated impacts on surface pollutant concentrations over 21 Guangdong cities due to the changes in ship emissions
(left column) and total anthropogenic emissions (right column) during P2 and P3 in 2020: (a,b) NO2 and (c,d) MDA8 ozone. The impacts were
quantified as the concentration differences between the ALL20 and SHIP19 experiments, relative to the concentrations in the ALL19 experiment.
The cities are color-coded by their locations relative to the coast and inland waterways.
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decreases in surface NO2 concentrations were most
pronounced along the Pearl River in western Guangdong
and over the coastal waters (16 to 18% decreases), since ship
emissions constituted a major source of NOx in this area
affected by both marine and inland vessels (Figure 1). Over the
East and South China seas, the recovery of ship activities to
normal levels after the lockdown (P3) was slower than the
recovery of land-borne anthropogenic activities.21 As a result,
there was a sustained decrease in NO2 concentrations along
the Pearl River and over the coastal waters during P3.
We aimed to assess whether our simulated impacts of ship

emission changes on surface NO2 in early 2020 were consistent
with observations. However, no surface NO2 measurements
were available over the coastal waters of Southern China.
Instead, we compared the differences in tropospheric NO2
column concentrations observed by TROPOMI over the main
ship lanes over Southern China in early 2019 and 2020 (Figure
S6). We defined the main ship lanes as the 0.05° model grids
where the NOx emission from ships was higher than that from
land-borne NOx sources and where the NOx emission from
ships exceeded the 90th percentile of ship NOx fluxes over
Southern China (0.41 g m−2 month−1). The TROPOMI-
observed mean tropospheric NO2 column concentration over
the main ship lanes during January and February 2020 was 3.5
× 1015 molecules cm−2, which was 13% lower than the mean
observed tropospheric NO2 concentration during the same
period in 2019 (4.0 × 1015 molecules cm−2, Figure S6b). This
difference reflected the impacts of ship emission changes in
early 2020, though part of the difference may be due to the
discrepant meteorological conditions between early 2019 and
early 2020. Our simulated reductions of mean tropospheric
NO2 column concentrations and surface NO2 concentrations
along the main ship lanes as a result of ship emission changes
in early 2020 were both 18%, consistent with the TROPOMI
observations.
Figure 4 depicts the simulated responses of daily mean NO2

concentrations at the surface sites in 21 Guangdong cities
(locations shown in Figure S3b) to changes in ship emissions
alone and to the total changes in anthropogenic (ship- and
land-borne) emissions during early 2020. Compared to the
anthropogenic emissions at 2019 levels, the total changes in
anthropogenic emissions during P2 and P3 led to a mean
decrease of 26% in the simulated surface NO2 concentrations
in the 21 Guangdong cities (25th and 75th percentiles of
relative changes were 22 to 31%, Figure 4b). We found that the
minor cities along the coast and the inland waterways of
Southern China were strongly affected by changes in ship
emissions. The changes in total anthropogenic emissions
caused a decrease of 10 to 42% in simulated surface NO2
concentrations in these cities. The changes in ship emissions
alone caused a decrease of 2 to 19% in simulated surface NO2,
comparable to the impacts of changes in land-borne emissions
(Figure 4a,b). In contrast, in the four most populated cities in
the PRD (Guangzhou, Shenzhen, Dongguan, and Foshan)61

and in the minor inland cities not along the major waterways
(Shaoguan, Meizhou, and Heyuan), most of the reduced NO2
concentrations were driven by the decline of land-borne
emissions. The changes in ship emissions alone led to only 1 to
9% decreases in the simulated surface NO2 in these cities. On
average, the estimated 19% reduction in ship NOx emissions
over Southern China in early 2020 drove an 8% mean decline
in the simulated surface NO2 concentrations over the 21
Guangdong cities. We thus estimated that ship NOx emissions

contributed to approximately 40% of surface NO2 concen-
trations over Guangdong in winter.
The changes in ship emissions during early 2020 resulted in

enhancements of simulated MDA8 ozone concentrations in
the PRD and western Guangdong regions. Specifically, there
were increases of 4.0 μg m−3 (4.9%), 3.0 μg m−3 (3.8%), and
3.4 μg m−3 (4.2%) during the three periods of early 2020,
respectively (Figure 3). Aside from these areas, the impacts of
ship emissions on simulated surface ozone were mostly
offshore. The changes in total anthropogenic emissions in
early 2020 led to 1 to 15% increases (25th to 75th percentiles)
in surface daily MDA8 ozone concentrations in the four largest
PRD cities and the coastal cities in western PRD, while causing
small ozone decreases (on average < 5%) over the other
Guangdong cities (Figure 4). Our study found that the
increased surface ozone in the four most populated PRD cities
was mostly due to the decreases in land-borne anthropogenic
emissions. However, over the three coastal cities in western
PRD (Jiangmen, Zhongshan, and Zhuhai), changes in ship
NOx emissions led to 2 to 15% increases in daily MDA8 ozone
during P2 and P3 relative to normal concentrations (Figure
4c). These cities already experience air quality nonattainment
due to surface ozone, and our findings suggest that future
reductions of NOx emissions from ships could further
compromise air quality in these areas.
The switch to LSFO outside the CDECA led to the

simulated surface SO2 and PM2.5 concentrations to drop
sharply over the Taiwan Strait in early 2020 (14 to 22% for
SO2 and 3.3 to 7.1% for PM2.5, Figure 3). However, the air
quality impact of that fuel switch outside the CDECA was
diminished inside the CDECA and over the PRD area (Figure
3). Consequently, although it was uncertain how well the
IMO’s LSFO policy was enforced in early 2020, this
uncertainty was unlikely to have a large impact on PRD air
quality, especially in winter.
Within the CDECA, subdued ship activities caused 2.7 to

4.3% reductions of simulated SO2 and 1.7 to 3.1% reductions
of simulated PM2.5 concentrations during three periods,
respectively (Figure 3). Figure S7 quantifies the simulated
responses of daily mean SO2 and PM2.5 concentrations in 21
Guangdong cities due to changes in ship emissions and total
anthropogenic emissions, respectively. In cities along the
waterways and coastal areas, ship emission changes may be
responsible for as much as 10% of the simulated total
reduction of surface SO2 and PM2.5 concentrations in early
2020. On average, the 20% (within CDECA) to 71% (domain
of Figure 1) reduction of ship SO2 emissions led to a 2.8%
decrease in the simulated surface SO2 concentrations in
Guangdong cities. We thus estimated that ship emissions
contributed 4 to 14% of surface SO2 concentrations over
Guangdong cities in winter. Similarly, the 20% (within
CDECA) to 57% (domain of Figure 1) reduction of ship
primary PM2.5 emissions led to a 4.3% decrease in the
simulated surface primary PM2.5 concentrations in Guangdong
cities. Thus, ship emissions contributed an estimated 7.5 to
22% of surface primary PM2.5 concentrations over Guangdong
cities in winter.
Liu et al.26 previously simulated the impacts on air quality in

seven coastal Guangdong cities (Zhuhai, Shenzhen, Zhong-
shan, Dongguan, Guangzhou in the PRD area, and Shanwei
and Lufeng along the eastern Guangdong coast) due to the
switch from high-sulfur content (2.43%) fuel oil to LSFO
within the CDECA. They found that the switch to LSFO
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would lower the average surface SO2 and PM2.5 concentrations
in these seven Guangdong cities by 30 and 6%, respectively,
based on emission levels prior to the year 2015.26 Under
present-day conditions, we estimated that ship emissions
contributed 4.4 to 16 and 8.8 to 25% of the ambient surface
SO2 and primary PM2.5 concentrations, respectively, in these
seven cities. Our finding, compared to Liu et al.’s26 previous
assessment in a background of much stronger land-borne
pollutant emissions, indicated that the enforcement of LSFO
use within the CDECA since 2019 has effectively reduced the
absolute impact of ship emissions on SO2 and PM2.5 pollution
over Southern China, at least in winter. In summer, when the
prevailing southerly winds would transport marine pollutants
onshore more effectively, ship emissions may affect the region’s
air quality more significantly.31

3.4. Implications for Future Ship Emission Control
Policies to Benefit Air Quality in Southern China. Our
analyses have implications for the future management of ship
emissions over Southern China to improve regional air quality.
Since January 1, 2022, a more stringent sulfur content cap of
0.1% has been applied to seagoing vessels operating within the
CDECA waters around Hainan. The Chinese government is
also considering extending the ultralow (<0.1%) sulfur fuel oil
policy to seagoing vessels throughout the entire CDECA after
January 1, 2025.25 Our results indicated that a switch from
LSFO to ultra sulfur fuel oil (a 5-fold reduction of sulfur
content) within the entire CDECA could potentially reduce
the contributions of ship emissions to surface SO2 and primary
PM2.5 over Guangdong cities to below 4%, at least in winter.
However, to control SO2 and PM2.5 pollution in Southern
China, future efforts should focus on reducing land-based
emissions of these pollutants and their precursors.
Since 2020, the Chinese government has aggressively

promoted the synergistic reduction of air pollutants and
greenhouse gas (GHG) emissions. The current guiding policy
on ship emissions is China’s 14th Five-Year (2021 to 2025)
Plan for Green Transportation,62 which targets a 7% decrease
in total NOx ship emissions and a 3.5% decrease in CO2 ship
emissions per unit freight turnover by 2025, relative to 2020
levels. To achieve these emission reduction goals, a series of
infrastructures and control measures have been developed or
planned in China. These include the development of shore-
side electric power facilities, the use of liquefied natural gas as
ship fuel, the use of zero- or low-carbon fuels (e.g., hydrogen
and biofuels) for ships and ports, and the adoption of more
energy-efficient technologies. The IMO has similarly been
promoting the coreduction technologies of air pollutant and
GHG emissions from international shipping, with a goal of a
50% reduction of the global ship emissions of GHG by 2050,
relative to 2008 levels.63,64

We have demonstrated that ship emissions currently
contributed approximately 40% of the surface NOx concen-
trations over Southern China and that a 19% decrease in ship
NOx emissions would increase surface MDA8 ozone levels by
3.8 to 4.9% in cities along the Pearl River and the coast cities in
winter. Although future reductions of NOx emissions would
effectively lower surface NO2 levels, they would increase the
risks of ozone pollution over Southern China, particularly over
western Guangdong and the coastal cities in winter. During
summer and fall, biogenic NMVOC emissions increase, and
the ozone production in the minor cities shift toward a NOx-
limited regime. However, in the major cities of Southern
China, ozone production is currently still in the NOx-saturated

or transitional regimes.65−67 Therefore, future abatements of
ship emissions should be implemented in synergy with
reductions of land-borne anthropogenic NMVOC emissions
to effectively alleviate surface ozone pollution over Southern
China in all seasons.68,73
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