
1. Introduction
Surface ozone is the dominant warm-season air pollutant in many global cities (Ministry of Ecology and Environ-
ment of the People's Republic of China (MEEC), 2021; U.S. Environmental Protection Agency (USEPA), 2021) 
and was responsible for 365,000 premature mortality worldwide in 2019 (Murray et al., 2020). In response to the 
health risks of ozone pollution, many cities have promulgated emergency response measures by abating precur-
sor emissions or by issuing public health advisories when surface ozone concentrations are forecasted to exceed 
the local air quality standards (Ministry of Environmental Protection of the People’s Republic of China, 2015; 
USEPA, 2015).

The effective implementation of these emergency response measures hinges on the accurate forecasts of ozone 
exceedances several days in advance. For instance, the MEEC requires that air quality forecasts be issued daily 
at the city level for the future 5 days, and that the daily air quality level forecasts (defined in Text S1 in Support-
ing Information S1) for the future 1–3 days be correct ≥60% of the days in a year (MEEC, 2020). In addition, 
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Plain Language Summary Weather forecasts are intrinsically uncertain, but the impacts of that 
uncertainty on air quality forecasts are not explicitly quantified in current air quality forecast systems. We 
proposed here a surface ozone ensemble forecast system, analogous to modern weather ensemble forecast 
systems, to represent the probability distribution of forecasted surface ozone concentrations given 30–50 
possible future weather outcomes. The computation costs of this surface ozone ensemble forecast system were 
greatly reduced using deep learning techniques that emphasized the spatial patterns of weather. We showed that 
the surface ozone ensemble forecast system's accuracy met the Chinese operational requirements. However, half 
of the ozone forecast error was due to weather forecast uncertainties, which cannot be completely eliminated 
even with perfect pollutant emission estimates and chemistry models. This weather-induced innate uncertainty 
in air quality forecasts should be considered for effective air quality management.
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the MEEC requires that the Air Quality Index (AQI) forecasts achieve accuracies of ±10 for non-exceedance 
days and ±15 for light pollution days (corresponding to ±12 and ±16.5 μg m −3 for maximum daily 8-hr aver-
age (MDA8) ozone concentration forecasts, respectively; or ±8 and ±30 μg m −3 of hourly ozone concentration 
forecasts, respectively) (Text S1 in Supporting Information  S1). However, a previous study showed that the 
median root-mean-square error (RMSE) of hourly ozone concentration forecasts in 34 Chinese cities from seven 
operational 72-hr forecast systems was approximately 40 μg m −3 in summer with regional differences (Petersen 
et al., 2019), not always compliant with the MEEC's required accuracy. What factors limit the accuracy of surface 
ozone forecasts, and whether the mandated forecast accuracies can be achieved using current forecasting tools, 
have not been systematically evaluated.

Surface ozone pollution is often correlated with meteorological conditions that favor the photochemical produc-
tion of ozone and the accumulation of its precursors, such as high temperature, strong solar radiation, surface 
wind convergence, and boundary-layer stagnation (Fu & Tian, 2019; Jacob & Winner, 2009). These local condi-
tions are in turn caused by various synoptic to mesoscale weather. In the Pearl River Delta (PRD) area of South-
ern China, for example, ozone pollution events are often associated with the regional subsidence or surface wind 
convergence induced by the west Pacific subtropical high (Jiang et al., 2021), the outflow of an approaching 
typhoon (e.g., Li et  al.,  2022; Ouyang et  al.,  2022), or the land-sea breeze (Ding et  al.,  2004). As such, the 
uncertainty in synoptic (e.g., typhoon track) to mesoscale (e.g., land-sea breeze) weather forecasts is a substan-
tial source of uncertainty to surface ozone forecasts (Lam et al., 2018; N. Wang et al., 2022). However, current 
operational air quality forecasts are based on a small number of regional air quality simulations and cannot repre-
sent the range of possible future weather outcomes. Moreover, weather forecast uncertainties increase with lead 
time (the length of time between the issuance of a forecast and the occurrence of the predicted event) (Slingo & 
Palmer, 2011) and may pose a “predictability” limit to air quality; that is, air quality forecasts beyond a certain 
lead time may not be sufficiently accurate to satisfy requirements or managerial needs.

The uncertainties of weather forecasts stem fundamentally from the non-linearity of atmospheric dynamics and its 
intrinsic sensitivity to initial conditions (Ehrendorfer, 1997), that is, a small perturbation in the initial conditions 
would lead to large and growing deviation in the system's behavior. In modern weather forecasting systems, forecast 
uncertainty is quantified by an ensemble of 30–50 forecast members; each member is a model realization with 
slightly perturbed initial conditions or physical parameters, such that the ensemble members span the range of possi-
ble weather outcomes. It stands to reason that the meteorological uncertainty of surface ozone forecasts should also 
be quantified with an ensemble approach. However, 3-D regional air quality models are computationally expensive, 
such that conducting many simulations with perturbed weather forecasts is not realistic for daily operations.

We propose here the use of machine learning/deep learning (ML/DL) methods to efficiently conduct surface 
ozone ensemble forecasts and quantify the meteorological uncertainty. Previous studies have demonstrated the 
success of ML/DL methods in air quality forecasts (e.g., Athira et  al.,  2018; Sayeed et  al.,  2020,  2021; Sun 
et  al.,  2021). However, previous ML/DL models mostly trained with locally observed meteorological varia-
bles and pollutant concentrations, thus removing the spatial information associated with synoptic to mesoscale 
weather and may be affected by pollutant observations during emergency emission abatement events. Moreover, 
precursor emissions have been changing rapidly in China and other developing countries, such that the ML/DL 
models trained with historic measurements may not reflect current precursor forcing.

In this study, we combined the 2-D convolutional neural network (2DCNN) method, which emphasized spatial 
patterns (Huang et al., 2021; Xing et al., 2020), and weather ensemble forecasts to construct a surface ozone 
ensemble forecast system (2DCNN-SOEF), with the goal of quantifying the meteorological uncertainties of 
ozone forecasts. We generated a large training data set by perturbing a regional air quality model with a wide 
range of synoptic-to-mesoscale meteorological variations. As a proof of concept, we constructed a daily 216-hr 
2DCNN-SOEF system for Shenzhen City in the PRD area of China. We evaluated the skills and forecast uncer-
tainties of the 2DCNN-SOEF system against observations during two ozone pollution seasons.

2. Materials and Methods
2.1. Surface Ozone Simulations Using the WRF-GC Model

We used the WRF-GC v2.0 regional air quality model (Feng et al., 2021; Lin et al., 2020) to simulate surface 
ozone over China during Shenzhen's main ozone pollution season (25 June to 6 October with one spin-up day) of 
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the years 2018, 2019, and 2021; the simulated results around Shenzhen (red box in Figure 1) were used as training 
and evaluation data sets for the 2DCNNs. WRF-GC is an online coupling of the Weather Research and Forecast-
ing (WRF) meteorological model (v3.9.1.1) (Skamarock et al., 2008, 2019) and the GEOS-Chem chemical trans-
port model (v12.8.2) (Bey et al., 2001). Figure 1 shows our simulation domain (16.4°–54.7°N, 72.8°–137.2°E), 
with 27 km horizontal resolution and 49 vertical levels. Further details of the WRF-GC model and our emissions 
and physical settings are described in Text S2 in Supporting Information S1.

Text S2 and Table S1 in Supporting Information  S1 describes our WRF-GC simulations. Briefly, the 
“WG-FNL-2021” simulation was driven and nudged with the meteorological reanalysis data from the National 
Centers for Environmental Prediction Final Operational Global Analysis (NCEP GDAS/FNL, 0.25° spatial reso-
lution, https://rda.ucar.edu/datasets/ds083.3/ last accessed: 6 May 2022; NCEP, 2000) for summer 2021, such that 
the simulated meteorological fields were as close to reality as possible. In order to generate a large training data 
set for the 2DCNNs, we conducted the “WG-FNL-2018” and “WG-hindcast-2021” simulations to represent the 
ozone-meteorology relationship of the years 2018 and 2021. These simulations were designed with the following 
goals: (a) representing a wide range of realistic synoptic weather affecting surface ozone, and (b) representing 
the mesoscale meteorological variations affecting surface ozone under those typical synoptic weather scenar-
ios. These simulations produced 16,464 hourly WRF-GC outputs, which we randomly divided into a training 
set (85%, 13,994 hr) and a test set (15%, 2470 hr). We further conducted a “WG-FNL-2019” simulation for an 
independent year (2019) and used the results (2,496 hr) to validate the 2DCNNs (Weng et al., 2022). Finally, we 
drove and nudged the WRF-GC model with 10 members from the ensemble data assimilation (EDA) (Isaksen 
et al., 2010) of the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ECMWF ERA5 https://
www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, last accessed: 6 May 2022; Hersbach et al., 2020) for 
2021. Each of the EDA members differed only in meso- to small-scale meteorology; the WRF-GC simulations 
driven by those members (“WG-EDA-2021”) were used to evaluate whether the 2DCNNs could discern surface 
ozone variations due to small differences in meteorology.

2.2. Construction of the 2DCNNs for Surface Ozone Prediction in Shenzhen

We designed 2DCNNs to predict hourly surface ozone concentrations at Shenzhen city center (22.36°–22.65°N, 
113.93°–114.24°E). Figure 1 shows the structure of our 2DCNN models; Text S3 in Supporting Information S1 

Figure 1. Schematic of the 2-D convolutional neural network (2DCNNs) trained with Weather Research and Forecasting 
(WRF)-GC simulated meteorological fields and surface ozone concentrations. The map shows the WRF-GC simulation 
domain (black box), the spatial extent of the meteorological fields used for driving the 2DCNNs (red box), and the model 
grid of Shenzhen city center where surface ozone concentrations were predicted (star). The right panel shows the structure of 
the 2DCNNs. The predictor variables included 2-m air temperature (T2m), 2-m relative humidity (RH2m), 10-m zonal and 
meridional winds (U10m and V10m), 6-hr accumulated precipitation (PREC), surface pressure (PS), and the hour-of-the-day 
(hour).
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describes the layers and parameters. The 2DCNNs were trained with WRF-GC-simulated hourly meteorologi-
cal fields over Guangdong Province and its coastal waters (the 648 km × 513 km red box in Figure 1) and the 
WRF-GC-simulated surface ozone concentrations at that hour at the model grid of Shenzhen city center, such 
that the 2DCNNs may capture synoptic to mesoscale meteorological features and the influences of both conti-
nental and marine air masses. We trained the 2DCNNs to predict ozone concentrations of any given hour using 
meteorological conditions of that hour. In this way, the 2DCNNs' ozone predictions were implicitly dependent on 
meteorological histories before the predicted hour, because weather conditions evolved continuously. We trained 
separate 2DCNNs for daytime (8:00 to 18:00 local time) and nighttime (19:00 to 7:00 local time) to represent 
the impacts of daytime photochemistry and nocturnal boundary layer dynamics on surface ozone concentrations. 
Guided by our experience in operational weather and air quality forecasts in Shenzhen and by trial-and-error, 
we selected the following hourly meteorological predictors: 2-m air temperature (T2m) and relative humidity 
(RH2m), 10 m zonal (U10m) and meridional (V10m) wind, surface pressure (PS), 6-hr accumulated precipitation 
(PREC), and an additional local time-of-day variable (hour, trigonometrically transformed following Sun and 
Archibald (2021)). Low planetary boundary layer heights (PBLHs) often occur under subsidence and stagnant 
conditions (Dong et al., 2020) and would be a strong predictor for surface ozone pollution. However, meteorolog-
ical models often have different vertical resolutions and define PBLH differently, such that the inclusion of PBLH 
would reduce the generalizability of the 2DCNNs to various meteorological data sets. Because low PBLHs often 
correlate with high T2m, low RH2m, high PS, and low wind speed, we relied on these predictors to implicitly 
represent the impacts of low PBLH in the 2DCNNs.

2.3. Hindcasts and Forecasts of Surface Ozone in Shenzhen Using the 2DCNNs

The performance of our trained 2DCNNs was evaluated in a series of ozone “hindcasts” (driven by meteoro-
logical reanalysis data) and “forecasts” (driven by actual weather forecasts) during the ozone seasons of 2019 
and 2021 (Text S4 in Supporting Information S1). For driving the 2DCNNs, the input meteorological fields 
were first interpolated to the 27 km-resolution grids of our WRF-GC model using a cubic spline. We drove 
the 2DCNN hindcasts with meteorological reanalyses from the NCEP GDAS/FNL and the ERA5 for the years 
2019 and 2021, respectively. The use of meteorological data from different years assessed the 2DCNNs' perfor-
mance under different weather scenarios, while the use of two reanalysis data sets assessed the 2DCNNs' robust-
ness against different meteorological data sources. Finally, we drove the 2DCNNs with the ECMWF 216-hr 
50-member ensemble weather forecast (0.125° resolution, 3-hr temporal resolution, https://www.ecmwf.int/en/
forecasts/datasets/set-iii, last accessed: 26 May 2022; Molteni et al., 1996; Palmer et al., 1997) during Shenzhen's 
ozone season of 2019 and 2021 (“2DCNN-SOEF-2019” and “2DCNN-SOEF-2021” in Table S1 in Supporting 
Information S1). These 2DCNN ensemble surface ozone forecasts (2DCNN-SOEFs) were used to quantify the 
uncertainty of surface ozone forecasts as a result of actual weather forecast uncertainties.

2.4. Hourly Surface Ozone Measurements

We evaluated the WRF-GC ozone simulations and the 2DCNN-SOEF predictions against quality-controlled 
(X. Wang et al., 2021) hourly ozone measurements from the China National Environmental Monitoring Centre 
(http://www.cnemc.cn, last accessed: 5 May 2022). We averaged hourly measurements at the seven sites within 
the metropolitan area (Table S4 in Supporting Information S1) to represent the surface ozone levels in Shenzhen.

3. Results
3.1. Evaluation of the Ozone-Meteorology Relationship Simulated by the WRF-GC Model and Its 
Manifestation in the 2DCNNs

We first evaluated whether WRF-GC correctly represented the surface ozone-meteorology relationship at our 
location of interest. The WG-FNL-2021 simulation nudged with observed meteorology reproduced the observed 
surface ozone concentrations over Southern China during late June to early October 2021 (Figure S2 in Support-
ing Information S1; spatial correlation r = 0.81, normalized mean bias NMB = 0.15 ± 0.12). The simulated 
time series of MDA8 surface ozone concentrations in Shenzhen were highly consistent with the observations 
(Figure S3 in Supporting Information S1; temporal correlation r = 0.82, NMB = 0.10 ± 0.38) during that period, 
indicating that the WRF-GC model, using with our emissions and physical settings, represented the relationship 
between synoptic meteorology and surface ozone concentrations in Shenzhen.
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Based on WRF-GC's good performance in simulating surface ozone in Shenzhen, we trained 2DCNNs using 
WRF-GC simulations to predict surface ozone concentrations at Shenzhen city center. Figure S4 in Supporting 
Information S1 evaluates the fitting of our 2DCNNs, that is, the consistency between hourly ozone concentrations 
calculated by the 2DCNNs driven by WRF-GC meteorological simulations and the hourly ozone concentrations 
directly simulated by WRF-GC. The 2DCNNs showed good agreement with WRF-GC simulations (r = 0.98, 
NMB = 0.007 for the training set; r = 0.98, NMB = 0.002 for the test set; r = 0.91, NMB = −0.131 for the 
validation using WRF-GC results from the independent year, 2019). In particular, in the independent validation 
set, 60% of the hourly surface ozone exceedances (>200 μg m −3, Text S1 in Supporting Information S1) simu-
lated by WRF-GC were successfully predicted by the 2DCNNs (“2DCNN-WG-2019”, Text S4 and Table S1 in 
Supporting Information S1). Altogether, 98% of the hourly surface ozone exceedance and non-exceedance events 
simulated by WRF-GC were successfully predicted by the 2DCNNs. We concluded that the 2DCNNs captured 
the ozone-meteorology relationship represented by our WRF-GC simulations for both low- and high-ozone cases. 
Of the six meteorological predictors used in the 2DCNNs, the 10-m meridional wind (V10m) was the most 
important predictor of high surface ozone concentrations in Shenzhen (Text S5 and Figure S5 in Supporting 
Informa tion  S1); this sensitivity reflected the transport of ozone and its precursors from the inland cities to 
Shenzhen by northerly winds and the transport of cleaner marine air from the South China Sea to Shenzhen by 
southerly winds, consistent with our operational experience and previous studies (e.g., Ding et al., 2004).

We experimented with other deep neural networks or multiple linear regression models driven only by local mete-
orological variables. We found that the 2DCNN framework better captured the ozone-meteorology relationship, 
as its spatial convolution layers accentuated the spatial connections between ozone and weather patterns (Figure 
S6 in Supporting Information S1). We also found that mesoscale meteorological differences (e.g., mesoscale 
convergence of surface winds shown in Figure S7 in Supporting Information S1) may lead to ±50 μg m −3 vari-
ation in the hourly surface ozone concentrations simulated by WRF-GC, consistent with previous studies (Li 
et al., 2022; Zhang et al., 2007); that sensitivity of surface ozone to mesoscale meteorology was reproduced by 
the 2DCNNs (Text S5 in Supporting Information S1).

We next applied the 2DCNNs to “hindcast” surface ozone concentrations in Shenzhen. Figure 2 shows the surface 
ozone concentration hindcasts from the 2DCNNs driven with different meteorological reanalysis data sets and 
compares them against surface observations. We focused our analyses on the results at 14:00 local time (6:00 
UTC), when surface ozone concentrations were often highest in a day. The 2DCNN hindcasts driven by different 
meteorological reanalysis data sets consistently showed good agreement with observations in 2019 and 2021 
(r = 0.73 to 0.91, with no systematic biases), demonstrating that the 2DCNNs were flexible with regard to the 
sources of the meteorological data set and that the 2DCNN's representation of ozone-meteorology relationship 
was robust. For the year 2019 (not used for training the 2DCNNs), the hindcasts driven by different reanalysis data 
captured 60% (2DCNN-ERA5-2019) and 91% (2DCNN-FNL-2019) of the observed hourly ozone exceedance 
events at 14:00 local time, as well as 60% (2DCNN-ERA5-2019) to 76% (2DCNN-FNL-2019) of the observed 
MDA8 ozone exceedance events.

3.2. Performance of the 2DCNN-Surface Ozone Ensemble Forecasts (2DCNN-SOEFs)

We drove the 2DCNNs with the ECMWF 50-member meteorological ensemble forecasts at 24 and 72-hr lead 
time, to produce an ensemble of surface ozone concentration forecasts given the range of possible future weather 
outcomes. Figure 2 shows the results from these 2DCNN-SOEFs during late June to early October of 2019 and 
2021 (2DCNN-SOEF-2019 and 2DCNN-SOEF-2021 in Text S4). At 24-hr lead time, the ensemble means of the 
surface ozone concentration forecasts at 14:00 local time were in good agreement with the observations for both 
2019 (r = 0.84, NMB = −0.11 ± 0.33) and 2021 (r = 0.83, NMB = 0.03 ± 0.36). The ensemble mean daily air 
quality level forecasts were correct on 75% and 90% of the forecasted days in 2019 and 2021, respectively. The 
skills of the 2DCNN-SOEF deteriorated slightly at 72-hr lead time (ensemble mean vs. observation r = 0.81, 
NMB = −0.14 ± 0.35 in 2019; r = 0.78, NMB = 0.02 ± 0.41 in 2021), with the 2DCNN-SOEF correctly fore-
casting the daily air quality levels on 76% and 87% of the days during the ozone pollution seasons of 2019 and 
2021, respectively. Therefore, the 2DCNN-SOEF system met the MEEC's required accuracy for air quality level 
forecasts (correct air quality level forecast on >60% of the days) at 1- to 3-day lead time.

The development of the 2DCNN-SOEF also allowed us to express the meteorological uncertainty of ozone pollu-
tion forecasts in an “ozone exceedance probability”, that is, the percentage of ensemble members predicting 
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surface ozone exceedance. This statistical metric is analogous to the precipitation probability in modern weather 
ensemble forecast systems. Figure S8 in Supporting Information S1 shows that, on 19 days during the ozone 
pollution season of 2019, the ozone exceedance probability forecasts forewarned the possibility of ozone exceed-
ances even when the forecasted ensemble mean ozone concentrations were not in exceedance. In this way, the 
2DCNN-SOEF better informed air quality management, because surface ozone concentrations under a wide 
range of possible future weather outcomes were predicted.

3.3. Predictability of Surface Ozone Concentrations as Limited by Meteorological Forecast Uncertainties

Our 2DCNN-SOEF system allowed us to quantify the changes of ozone forecast accuracy with lead time 
and the impacts of weather forecast uncertainties on ozone forecast errors. Figure 3 shows the RMSEs of the 
2DCNN-SOEFs relative to observations in Shenzhen for the 2019 ozone season. The MDA8 ozone concentra-
tions were only forecasted up to 144-hr lead time because the output frequencies of the ECMWF weather ensem-
ble forecasts were reduced to every 6 hr after that lead time. The RMSEs for forecasted ozone concentrations 
in exceedance of the national air quality standards (Text S1 in Supporting Information S1) were both larger and 
grew faster with lead time, compared to the RMSEs for forecasted ozone concentrations not in exceedance. This 
characteristic was consistent with the high-ozone events being more sensitive to mesoscale meteorology (Figure 
S5 in Supporting Information S1), which were in turn more difficult to forecast accurately at longer lead times. 
For forecasted hourly and MDA8 ozone concentrations exceeding the national standards, the RMSEs were 26 ± 2 
and 19 ± 1 μg m −3 at 24-hr lead time, respectively (Figure 3a). At 72-hr lead time, the RMSEs for hourly and 
MDA8 ozone concentrations in exceedance were 24 ± 2 and 18 ± 1 μg m −3, respectively. These ozone forecast 
errors were comparable to the 20–30 μg m −3 median RMSE for the 72-hr ozone forecasts over PRD cities from 
seven operational forecasting systems reported by Petersen et  al.  (2019). The RMSEs of the 2DCNN-SOEF 
hourly ozone concentrations were smaller than the MEEC's accuracy requirement (±30 μg m −3) up to 144-hr lead 

Figure 2. Surface ozone concentrations at Shenzhen at 14:00 local time from the 2-D convolutional neural network (2DCNN) hindcasts and forecasts (color-coded) for 
late June to early October of (a) 2021 and (b) 2019. The shaded areas indicated the standard deviations of the 2DCNN-surface ozone ensemble forecasts at 24-hr (dark 
blue) and 72-hr (light blue) lead time, respectively. Also shown are the surface observations at Shenzhen (black line). The correlation coefficients (r) and normalized 
mean biases of the forecasts against the observations are shown inset.
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time, but the RMSEs of the MDA8 ozone forecasts exceeded the MEEC's accuracy requirement (±16.5 μg m −3) 
even at 24-hr lead time (Figure 3a). For MDA8 and hourly ozone concentrations not exceeding the national stand-
ards, the RMSEs of our 2DCNN-SOEF system were below 8 μg m −3 and satisfied the accuracies required by the 
MEEC throughout the 9-day forecast window (Figure 3a). In terms of the air quality level forecast, the hit rate (the 
percentage of the number of days with correct air quality level forecast vs. the total number of forecasted days) 
of the 2DCNN-SOEF was >60% up to 144-hr lead time for MDA8 ozone and up to 216-hr lead time for hourly 
ozone during the 2019 ozone season (Figure 3d), compliant with MEEC's requirements.

The 2DCNN-SOEF's error and its deteriorating accuracy with lead time were the consequence of several sources 
of uncertainties, including uncertainties in precursor emissions and photochemistry inherited from the WRF-GC 
model, as well as the uncertainties associated with weather forecasts. In meteorological ensemble forecast 
systems, the ensemble members often differ in meso- and small-scale features due to sensitivity to initial condi-
tions, but the ensemble mean averages out these variations and is often taken as the operational forecast product 
for the synoptic weather. We therefore decomposed the uncertainty associated with weather forecasts into (a) the 
mis-forecast of synoptic weather by the ERA ensemble mean, and (b) variations among the ECMWF ensem-
ble members. Figures 3b and 3c dissect the impacts of these two components of meteorological uncertainty. 
Assuming that the errors inherited from WRF-GC were similar in all 2DCNN predictions, the ozone hindcast 
driven by ERA5 meteorological reanalysis (2DCNN-ERA5-2019) would be the best predictions possible for the 

Figure 3. The 2-D convolutional neural network surface ozone ensemble forecast’s (2DCNN-SOEF) performance for 
hourly (red) and MDA8 (blue) ozone concentrations during the 2019 ozone season as a function of forecast lead time: (a) 
root-mean-square errors (RMSEs) of the 2DCNN-SOEF relative to observations, (b) RMSEs of the 2DCNN-SOEF relative 
to the 2DCNN-ERA5-2019 surface ozone hindcast, (c) RMSEs of the 2DCNN-SOEF ensemble members relative to the 
ensemble means, and (d) the hit rates of air quality level forecast. The shaded areas indicated the standard deviations among 
the ensemble members. Also shown are the Ministry of Ecology and Environment of the People's Republic of China’s 
(MEEC) forecast accuracy requirements (dashed lines).
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2DCNNs (i.e., as close to the observation as possible). Consequently, the deviation of the 2DCNN-SOEF-2019 
(driven by actual weather forecast) relative to the 2DCNN-ERA5-2019 hindcasts would be completely due to 
weather forecast errors. For ozone exceedance cases, the RMSEs of the 2DCNN-SOEF-2019 ensemble mean 
relative to the 2DCNN-ERA5-2019 hindcast for hourly and MDA8 ozone concentrations were 9.7 ± 1.8 and 
10.1 ± 0.7 μg m −3, respectively, at 24-hr lead time (Figure 3b). These purely weather-related RMSEs constituted 
38% and 54% of the total ozone forecast RMSEs (Figure 3a) for hourly and MDA8 ozone forecasts at 24-hr lead 
time, respectively. As such, the errors in synoptic weather forecasts posed a limit to the forecast accuracies of 
surface ozone at 24-hr lead time and beyond. In comparison, the RMSEs of the 2DCNN-SOEF-2019's ensemble 
members relative to their ensemble mean were driven by the variations among the weather ensemble forecast 
members (Figure 3c); these RMSEs were smaller but still sizable, constituting approximately one-third of the 
total ozone forecast error (Figure 3a).

Figure S9 in Supporting Information S1 further compared the skills of our 2DCNN-SOEF system with the skills 
of the ECMWF ensemble forecasts for precipitation in Shenzhen. Precipitation, especially the convective precip-
itation prevailing in the PRD area in summer and fall, is typically regarded as difficult to forecast accurately. In 
terms of quantitative forecast skills, the RMSEs of precipitation forecasts were large at 24-hr lead time but did 
not grow significantly with lead time, whereas the RMSEs of high hourly ozone concentration forecasts grew 
rapidly with lead time (Figure S9a in Supporting Information S1). In terms of categorical forecast skills (Text S6 
in Supporting Information S1), the 2DCNN-SOEF was skillful at predicting exceedance events relative both to 
the climatology (Brier skill score in Figure S9d in Supporting Information S1) and to a random forecast (Receiver 
Operating Characteristic skill score in Figure S9e in Supporting Information S1) up to 144-hr lead time. The 
forecast skills of MDA8 ozone exceedances were comparable to those of precipitating events, while the forecast 
skills of hourly ozone exceedances were considerably lower. If we considered the total hit rates of both exceed-
ance and non-exceedance events (Hiedke skill score in Figure S9f in Supporting Information S1), then the skills 
of the 2DCNN-SOEFs for both MDA8 and hourly ozone were substantially better than the ECMWF's skills in 
forecasting precipitating/non-precipitating events.

4. Conclusions
We developed 2-D spatial CNN models to predict surface ozone concentrations from regional weather ensem-
ble forecasts, such that the uncertainty of surface ozone forecasts due to weather forecast uncertainties can be 
efficiently quantified. Our 2DCNN-SOEF demonstrated comparable performance to current operating forecast 
systems and met the MEEC's required accuracy for air quality level forecasts up to 144-hr lead time. We showed 
that uncertainties in weather forecast contributed 38%–54% of the ozone forecast errors at 24-hr lead time and 
beyond; these weather-related errors cannot be eliminated even with perfect pollutant emission inventories, 
chemical mechanisms, or numerical techniques. This predictability limit of surface ozone likely varied with 
geographical locations and seasons and should be accounted for when establishing local air quality forecast accu-
racy goals and in decision-making for air quality management.

We chose to build our ozone ensemble forecast system using the 2DCNN model not only to accentuate spatial 
weather patterns, but also to reduce the accumulation of ozone forecast errors with time. Time-series ML/DL 
models, such as the Long Short Term Memory (LSTM) model and the Recurrent Neural Networks (RNN) have 
been used in air quality forecasts to capture the temporal evolutions of pollutant concentrations (Athira et al., 2018; 
Zhao et al., 2019), which are particularly important for short-term forecasts. However, these time-series models 
tended to accumulate forecast errors over longer lead times (Bi et al., 2022; Freeman et al., 2018). In future work, 
we intend to combine 2DCNN with LSTM or RNN to improve the 2DCNN's short-term forecast accuracies.

The 2DCNN-SOEF system was computationally efficient for operational applications. On our 48-core Linux 
server, the WRF-GC model produced a 3-day ozone forecast with only one meteorological realization over the 
domain of Figure 1 (33,600 grids) in approximately 20 hr of computation time, typical of current regional air 
quality models. The 2DCNN-SOEF system produced 30 ensemble members of 9-day ozone forecasts, each 
associated with a different meteorological realization, at only one location in approximately 6 hr (Table S5 in 
Supporting Information S1). The WRF-GC spent 97% of its computation time on meteorological and chemi-
cal calculations. The 2DCNN-SOEF spent 85% of its time downloading the global weather ensemble forecast 
data, which would not need to be repeated if ozone ensemble forecasts at more locations were desired. On our 
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hardware, the estimated time for the 2DCNN-SOEF system to generate a 9-day 30-member ensemble hourly 
ozone forecast for each of the 376 Chinese cities would be 23 hr.

Our work demonstrated the feasibility of developing 2DCNN-SOEF systems for operational air quality forecast 
and management. As our understanding of ozone photochemistry, regional precursor emissions, and meteorolog-
ical processes improve, the trainer-induced errors (i.e., errors in the ozone-meteorology relationship simulated 
by the WRF-GC model) could be further reduced. Our methodology can be extended to develop 2DCNN ensem-
ble forecast models for other air pollutants and other meteorology-dependent environmental risks. Using global 
weather ensemble forecasts, these risks can be efficiently forecasted at any global location, opening up new 
applications of deep learning in environmental management.

Data Availability Statement
The source code of the 2-D convolutional neural network-surface ozone ensemble forecast (2DCNN-SOEF) 
system is available at https://github.com/axzhang1216/2DCNN (last accessed: 13 December 2022). The source 
code of the Weather Research and Forecasting (WRF)-GC v2.0 model (Feng et al., 2021) is available at https://
github.com/jimmielin/wrf-gc-release (last access: 13 December 2022). The WRF-GC and 2DCNN simulation 
results described in this study are permanently archived at https://doi.org/10.57760/sciencedb.o00005.00025.
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