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ARTICLE INFO ABSTRACT

Open burning of crop residues is a strong seasonal source of air pollutants in many parts of China, but the large
day-to-day variability of the associated emissions pose a great challenge for air quality forecasts. Here we de-
veloped back-propagation neural network (BPNN) ensembles to forecast the daily fire pixel counts in Southern
China during the month of January. The BPNN ensembles were trained using daily assimilated surface me-
teorological data (including air temperature, relative humidity, pressure, and winds) and daily fire pixel ob-
servations from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the month of January during
the years 2003-2012. We showed that the BPNN ensembles successfully forecasted the day-to-day variability
and the interannual variability of fire pixel counts over Southern China in January of the years 2013-2015, with
correlation coefficients of 0.6-0.8 against the MODIS observations. We used the forecasted daily fire pixel counts
in January 2014 and January 2015 to scale the climatological January biomass burning emissions from the Fire
Inventory from NCAR (FINN) and applied the resulting forecasted daily biomass burning emissions to drive the
WRF-Chem regional air quality model. The use of BPNN-ensemble-forecasted daily biomass burning pollutant
emissions led to significant improvements in the daily forecasts of PM, 5 concentrations in Southern China for
January 2014, with the mean bias of the simulated surface PM, s concentrations reduced from —9.1% to
—1.2%. We repeated the sensitivity simulations for January 2015 and also found a modest improvement when
using the forecasted daily biomass burning pollutant emissions (mean bias of the simulated surface PM, s
concentrations reduced from —5.8% to —2%). Our approach can be applied to other source regions of biomass
burning emissions to improve the accuracy of daily air quality forecasts.
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1. Introduction

Open, in-field burning of crop residues, a type of biomass burning, is
a strong seasonal source of air pollutants in many parts of China (Ding
et al., 2013; Nie et al., 2015; Wang et al., 2015; Wu et al., 2017; Chen
et al., 2017). Agricultural operations in China currently produce 500 to
700 Tg of crop residues per year (Li et al., 2016), 75% of which are in
the form of straws of rice, wheat, and corn (Chen et al., 2017). Although
the open burning of these crop residues has been outlawed since the
year 2000, it has been estimated that 6.6%—-28% of the national total
crop residues are still being burned in-field (Cao et al., 2008; Huang
et al., 2012; Li et al., 2016). In Southern China, it was estimated that
26%-38% of the total crop residues were burned in-field between the
years 2000 and 2014 (Jin et al., 2018). This is because Chinese farmers
no longer use crop residues as primary fuel for residential heating and
cooking, and alternative means of disposing large amounts of crop

residues are costly and inconvenient (Qu et al., 2012; Zhao et al., 2017).

The occurrences of open crop residue burning in China are highly
variable in space and time. Seasonally, the spatial distribution of these
burning activities are tied to the harvest of local crops, e.g., the harvest
of winter wheat over the North China Plain in June and the harvest of
late rice over Southern China from December to the following February
(Huang et al., 2012; Zha et al., 2013; Zhuang et al., 2018). In addition,
the occurrences of these burning activities vary greatly from day to day
and may have strong, implicit dependencies on local meteorology. For
example, cold temperature and large precipitation during the growing
season, particularly during the final crop-ripening stage, may delay the
harvest and the subsequent open burning dates by up to 10 days (Wang
et al., 2009). Moreover, crop residues do not burn in the field during
rain, or farmers may choose not to ignite the residues when they are
damp. Crop residue burning activities may also be affected by local
socio-economical factors, such as the differences in crop types and
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harvesting techniques, the enforcement of anti-burning laws, and the
infrastructure for recycling crop residues, etc (Qu et al., 2012).

The large day-to-day variability of the crop residue burning activ-
ities poses a great challenge for regional air quality forecasts. Many
biomass burning emission inventories use surface reports or satellite
observations of fire pixels, burned area, or fire radiative power to re-
present the spatiotemporal variability of fires (e.g., van der Werf et al.,
2006, 2010; 2017; Larkin et al., 2009; Wiedinmyer et al., 2011; Huang
et al., 2012; Li et al., 2016). In an air quality hindcast, these inventories
can provide daily, km-scale-resolution estimates of pollutant emissions
from biomass burning, including the open burning of crop residues and
other types of biomasses. In an air quality forecast, however, there is
currently no good way to predict the day-to-day variability of fire ac-
tivities. Most air quality forecast models either ignored the biomass
burning emissions (e.g., Wang et al., 2012) or, more commonly, used
the monthly mean biomass burning emissions for all days in the same
month, leading to gross inaccuracies in daily air quality forecasts. (e.g.,
Chen et al., 2009; Li et al., 2013b). Some air quality models “fore-
casted” biomass burning by assuming that the fire conditions observed
in near-real-time will persist for a few days, either with or without
modulation in fire intensities and/or fire counts by weather (e.g., Larkin
et al., 2009; Kochanski et al., 2013; Peterson et al., 2013; Pavlovic et al.,
2016; Di Giuseppe et al., 2017). This assumption is likely not applicable
to fires that are small in scale, short in duration, and heavily manipu-
lated by humans, such as the fires associated with crop residue burning.

A number of studies have developed process-based fire schemes for
climate models and have included meteorological influences on the
occurrence, strength, and spread of fires (e.g., Arora and Boer, 2005;
Pechony and Shindell, 2009; Li et al., 2012, 2013a). For example, Li
et al. (2012, 2013a) parameterized fire occurrences as a function of
cloud-to-ground lightning flash rates, relative humidity, and soil wet-
ness. In addition, they linked the spread of fires to the directions and
speeds of surface winds and the degree of fire suppression by human. Li
et al. (2013a) showed that their global fire parameterization re-
produced the observed seasonal and interannual variability of global
burned area between 1997 and 2004. However, whether these para-
meterizations developed for climate models were able to reproduce the
observed day-to-day variability of small fires remained unknown.

We propose here the use of back-propagation artificial neural net-
works (BPNNs) (Rumelhart et al., 1986) to forecast the day-to-day
variability of open crop residue burning activities. BPNNs learn from
historical datasets - in our case the historical daily meteorological data
and fire pixel counts - and find the empirical relationships between the
variables. Several studies have used artificial neural networks to predict
the seasonal and daily risk of forest wildfires (Vasconcelos et al., 2001;
Li et al., 2009; Vasilakos et al., 2009; Stair et al., 2016). These studies
showed that the risk of forest wildfires are generally positively corre-
lated with temperature, while being negatively correlated with rainfall,
relative humidity, and soil moisture, and non-linearly dependent on
population density. To the best of our knowledge, the use of artificial
neural networks to forecast the day-to-day variability of open crop re-
sidue burning activities have not yet been explored.

As a proof of concept, we developed BPNN ensembles to forecast the
daily fire pixel counts and the associated biomass burning emissions in
Southern China (domain D03 in Fig. 1a) for January from the years
2013-2015. We focused on the month of January, when the fire pixel
counts in Southern China were largest in the year (Zhuang et al., 2018)
and more than 90% of the local biomass burning emissions were as-
sociated the post-harvest burning of the straws from third-round late
rice (Yan et al., 2006; He et al., 2011; Huang et al., 2012). We applied
the forecasted biomass burning pollutant emissions in an air quality
model and compared the simulated PM, 5 concentrations to observa-
tions in January 2014 and January 2015, with the goal of assessing the
effectiveness of the BPNNs in improving regional air quality forecasts.
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2. Methodology
2.1. Fire pixel observations and surface meteorological data

We divided the Southern China domain into eight 3° longitude x 2°
latitude boxes (Fig. 1) and trained BPNN ensembles independently for
each box (Section 2.2) to account for the local socio-economical im-
pacts on crop residue burning. We calculated the daily fire pixel counts
and daily mean values of the surface meteorological variables within
each of the eight boxes. Daily surface meteorological data during the
month of January for the years 2003-2015 were taken from the Na-
tional Centers for Environmental Prediction (Final) Operational Global
Analyses dataset (NCEP FNL) (Kalnay et al., 1996), which had a spatial
resolution of 1° X 1° and a temporal resolution of six hours. We verified
that these reanalysis data were consistent with surface meteorological
measurements over Southern China during January of 2003-2012.

We used the daily fire location data from the Global Monthly Fire
Location Product (MCD14ML, Collection 5; Giglio, 2013) during the
month of January for the years 2003-2015, observed by the MODIS
instruments on board the Terra and Aqua satellites. Terra and Aqua are
both polar-orbiting satellites, overpassing the Equator in the descending
mode at 10:30 local time (LT) and 14:30 LT, respectively. The fire de-
tection algorithm for the MCD14ML dataset was described in detail in
Giglio (2013). Briefly, the algorithm classified each 1-km pixel within
the MODIS swaths into one of the following six classes: fire, non-fire,
cloud, water, unknown, or missing data. Over land, potential fire pixels
were identified based on enhancements in the brightness temperatures
in the mid-infrared channels (4 um and 11 um) relative to the non-fire
background. False fire detections due to sun glint and desert surfaces
were removed. Cloud pixels were identified by high reflectance in the
visible channels and/or low brightness temperatures in the 12um
channel. A detection confidence was calculated for each fire pixel based
on five criteria (Giglio et al., 2003). We used only fire pixels with de-
tection confidence exceeding 50%, which amounted to 84% of the fire
pixels reported in the MCD14ML dataset for the month of January be-
tween 2003 and 2015. Theoretically, fire pixels may be “double-
counted” if the area was sampled more than once by the MODIS swaths
on a given day. However, this was not a major issue for our case, as only
1.3% of the pixels (205 fire pixels out of a total of 15759 fire pixels)
were reported as fire more than once on any given day during the
month of January between 2003 and 2015.

Cloud may obstruct the satellite detection of fire/non-fire conditions
at the surface, although this did not seem to be a major issue for the
domain and the time period of our study. For our domain in Southern
China, the January mean fractions of MODIS-sampled pixels identified
as clouds between 2003 and 2015 were relatively low (4.6%—-24.9%,
average 15%). The correlation between the daily fire pixel counts and
the daily fractions of cloud-covered pixels over Southern China in
January from the year 2003-2015 was also low (R = —0.35, 403
samples). We will return to the impacts of cloud on fire pixel detection
in Section 3.

In this study, we chose to use the MCD14ML Collection 5 product so
as to be consistent with the Fire INventory from NCAR (FINN;
Wiedinmyer et al., 2011), which we scaled to forecast daily biomass
burning emissions (described in Section 2.3 below). An updated Col-
lection 6 fire product is also available from MODIS (Giglio, 2015). We
compared the daily fire pixel counts from Collection 5 and Collection 6
over Southern China during the month of January for the years
2003-2015 (Fig. S1). We found that, although the daily fire pixel counts
over Southern China in Collection 6 were systematically larger than
those in Collection 5 by 73%, the correlation coefficient between the
two products was 0.9. As such, the day-to-day variability of the two
products were highly consistent with each other.
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Fig. 1. (a) The three nested domains in our WRF-Chem simulations, with horizontal resolutions of 81 km, 27 km, and 9 km, respectively. The innermost domain
(D03) covering Southern China was divided into eight boxes (red) for analyses; a BPNN ensemble was developed for each of these eight boxes. (b) The Southern China
domain (D03) and the locations of the 22 surface PM, s measurement sites (red symbols). The sites Guilin (red diamond) and Shaoguan (red square) are marked. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

2.2. BPNN ensembles of fire pixel counts

For each of the eight boxes over Southern China, we constructed a
BPNN ensemble of 100 members to parameterize the relationships be-
tween fire pixel counts and surface meteorological variables. Each in-
dividual BPNN member was trained using daily data from the month of
January during the years 2003-2012. The January data from the years
2013-2015 were reserved for validation (Section 3).

Fig. 2 shows our three-layer structure for each BPNN member,
which consisted of an input layer, a hidden layer, and an output layer.
Through trial and error, we found this structure to be the simplest one
that served our need. The superscript s denoted the input/output data
for a particular day. The input layer consisted of N; neurons. I, the
signal transmitted by the ith neuron in the input layer, was the value of
the ith input surface meteorological variable linearly mapped to a range
of [-1, 1]. The hidden layer consisted of Ny neurons, each conducting an
intermediate calculation on the transmitted signals from the input
layer. The signal transmitting out of the hth hidden neuron was

Nr
=1 > 1w+ B!
i=1 (1a)

Input layer

Hidden layer

Output layer

Fig. 2. The BPNN structure used in this study.
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where W/} was the weight applied to the I signal and B was a sys-
tematic bias applied by the hth neuron in the hidden layer. We selected
the activation function, f, to be the continuous and non-linear tangent
sigmoid function (Eq. (1b)). The output layer consisted of N, neurons.
The signal transmitted by the pth neuron in the output layer was

N
Py=g| D) Hi-Wi, + B}
h=1 (23)

g =X (2b)

where W,fp was the weight applied to the transmitted signal from the
hth neuron in the hidden layer by the pth neuron in the output layer,
and Bf,’ was a systematic bias assumed by the pth neuron in the output
layer. In our case, there was only one output neuron (Np = 1). We chose
the activation function, g, to be the identity function, such that the
transmitted value from the output layer was the predicted daily fire
pixel counts for the box of interest.

By “training” a BPNN member, we sought to minimize a cost
function, J, defined as

S
1
I=5 D (Pooy = Yo

s=1

€))

where Y,_; was the daily MODIS-observed fire pixel counts for the box
of interest, and S was the length of the training data
(31days x 10years). The coefficients in the BPNN were iteratively
optimized using a Levenberg-Marquardt algorithm (Hagan and Menhaj,
1994) until one of two convergence criteria was achieved: (1) J was
reduced to less than 1% of its initial value, or (2) further decreases in J
could not be achieved using a Newtonian method after ten consecutive
iterations (i.e., a local minimum of J was found). Each of the 100
member of a BPNN ensemble was trained with randomized initial
guesses for the coefficients; this allowed the optimization algorithm to
converge to more than one possible solution and achieve better gen-
eralization.

In order to select the meteorological variables to use as inputs to the
BPNNs, we first picked out the daily surface meteorological variables
from the NCEP FNL dataset that were significantly correlated with the
daily fire pixel counts over Southern China. We then added these
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Sensitivity simulations of surface PM, 5 concentrations over Southern China in January 2014.

Experiments Daily biomass burning emissions Mean concentration (unit: ug m %) and normalized mean biases
(NMB) against the measurements”
FINN_2014 Daily biomass burning emissions taken from FINN for January 2014 72.1 (=7.9%)
NO_BB No biomass burning emissions 65.0 (—17.0%)
FINN_MEAN  Climatological biomass burning emissions from FINN for the month of January during the years ~ 71.1 (—9.1%)
2003 to 2012
BPNN_2014 Daily biomass burning emissions forecasted by scaling FINN climatology emissions with daily 77.3 (—1.2%)

fire pixel counts forecasted by the BPNN ensembles for January 2014

@ Calculated for January 4th to 31st, 2014.

meteorological variables one by one to the BPNN and performed
training experiments. Through a series of BPNN training experiments,
we selected five surface meteorological variables (air temperature, re-
lative humidity, air pressure, U-wind, and V-wind) as inputs (N; = 5)
and two neurons in the hidden layer (Ny = 2), on the account that this
combination of input variables and hidden layer structure predicted
daily fire pixel counts that agreed best with the MODIS observations in
January 2014 (Section 3).

2.3. Daily biomass burning emission forecasts

To forecast the daily fire pixel counts for January 2013 to 2015, we
drove the BPNN ensemble with daily mean values of surface meteor-
ological variables from the NCEP FNL reanalysis dataset, in order to
focus our assessment on the predictive power of the BPNN ensembles.
In an actual forecast, the BPNN ensembles may be driven by outputs
from the NCEP Global Forecast System or other meteorological fore-
casts, but the accuracy of the forecasted fire pixel counts would be af-
fected by the accuracy of the meteorological forecasts. For each box of
interest, we took the daily ensemble average as our forecasted daily fire
pixel counts.

In order to forecast the daily biomass burning emissions over
Southern China, we used the forecasted daily fire pixel counts to scale
the climatological biomass burning emissions from FINN (version 1.5;
Wiedinmyer et al., 2011). FINN was developed at 1-km resolution using
daily fire pixel locations from the MCD14ML dataset (Collection 5;
Giglio et al., 2006), as well as the Land Cover Type product (Friedl
et al.,, 2010) and the Vegetation Continuous Fields product (Hansen
et al., 2003; 2005; Carroll et al., 2011) from MODIS. Emission factors
used in FINN were taken from published literature (Andreae and
Merlet, 2001; McMeeking, 2008; Akagi et al., 2011).

For an emitted trace species m, we forecasted the daily biomass
burning emission (Ennq (X)) at location (x,y) in the nth box in
Southern China on the dth day in January as:

Em, n,d(xa Y) = FINN_Em, n(x7 y)'kn,d (43)
o FCua
=R, (4b)

where FINN_E,, ,(x, y) was the climatological biomass burning emis-
sion for species m at location (x,y) in the nth box from FINN, calculated
by averaging over all days in January for the years 2003-2012 (the time
period used for training the BPNN ensembles). The daily fire activity
scale factor, k, 4, was defined as the ratio between the BPNN-ensemble-
forecasted fire pixel counts on the dth day in the nth box (FC, 4) and the
climatological fire pixel counts in the nth box for all days in January
2003 to 2012 (FC,).

2.4. WRF-Chem sensitivity experiments and surface PM s observations

We used the Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem, version 3.6.1, Grell et al., 2005) to simulate
surface PM, s concentrations over Southern China in January 2014 and
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January 2015. Fig. la shows the three nested model domains with
spatial resolutions of 81 km (50 X 44 grids), 27 km (66 X 66 grids),
and 9km (108 x 81 grids), respectively. The innermost domain cov-
ered Southern China (Fig. 1b). Meteorological boundary conditions
used to drive WRF-Chem were from the NCEP FNL dataset and updated
every six hours. We used the monthly mean tracer concentrations si-
mulated by the MOZART-4 global model (Emmons et al., 2010) as
chemical initial/boundary conditions. Aerosol species in our model
included primary elemental carbon aerosols, primary organic aerosols,
dust, sea salt, other primary PM, s, secondary inorganic aerosols, and
secondary organic aerosols (SOA). Emission inventories for anthro-
pogenic and biogenic sources were as described in the supplementary
information and interpolated to the model grids. Aerosol microphysics
and secondary aerosol formation was simulated with the MOSAIC
module using four size bins (Zaveri et al., 2008). SOA formation was
simulated using the volatility basis set framework (Shrivastava et al.,
2011). The simulations were conducted from January 1st to 31st, 2014;
the first three days initialized the model.

We conducted four sensitivity simulations each for January 2014
and January 2015, respectively, using different biomass burning
emissions. As summarized in Table 1 for January 2014, we first con-
ducted a simulation (FINN_2014) where the daily biomass burning
emissions over Southern China were as given by FINN for January
2014. This simulation represented a best-case scenario, where the day-
to-day variability of biomass burning emissions was described by the
daily actual fire observations from satellites. Secondly, we conducted a
simulation (NO_BB) where the biomass burning emissions over
Southern China were turned off. A third simulation (FINN_MEAN) was
conducted where the daily biomass burning emissions over Southern
China were set to the climatological January mean biomass burning
emissions from FINN for the years 2003-2012. This simulation re-
presented the approach most commonly taken by current air quality
models in the forecast mode. Finally, a fourth simulation (BPNN_2014)
was driven by our BPNN-ensemble forecasted daily biomass burning
emissions. A similar set of sensitivity simulations was conducted for
January 2015 (Table S2).

We compared our simulated PM, s concentrations to hourly mea-
surements during January 2014 and January 2015at surface sites
managed by the China National Environmental Monitoring Centre
(www.cnemec.cn). We removed obvious erroneous measurements and
excluded sites with less than 90% valid hourly measurements (supple-
mentary information). Some model grids contained more than one
surface site. In such cases, we selected the site with the most complete
valid hourly measurements during January 2014 and 2015. In the end,
measurements from 22 surface sites were used for comparison with our
simulations (Fig. 1b and Table S1).

3. BPNN ensemble forecasts of daily fire pixel counts and biomass
burning emissions

Fig. 3 shows the daily fire pixel counts forecasted by our BPNN
ensembles and compares them against the daily fire pixel counts ob-
served by MODIS for each of the eight boxes of interests in January
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Fig. 3. Comparison of the daily fire pixel counts as observed by MODIS (blue lines) and as forecasted by the BPNN ensembles (red lines) for January 2014: ((a) to (h))
for each of the eight boxes of interest and (i) for the Southern China domain. Also shown are the climatological MODIS fire pixel count for January during the years

2003-2012 (green lines).

2014. Also shown in Fig. 3 are the climatological January mean fire
pixel counts observed by MODIS during the years 2003-2012. The
MODIS-observed fire pixel counts showed two periods of high values:
one during January 1st to 7th, 2014 and one during January 16th to
25th, 2014. The lowest and highest MODIS-observed daily fire pixel
counts within a given box were 0 and 141, respectively. This large day-
to-day variation in fire occurrences could not be represented by the
climatological January fire pixel counts. In contrast, our forecasted
daily fire pixel counts reproduced the day-to-day variation of the
MODIS observations, with correlation coefficients (R) exceeding 0.50
for six of the eight boxes and R = 0.77 for the Southern China domain.

The BPNN ensembles were also able to capture the interannual
variation of fire activities over Southern China. Fig. 4 compares the
daily fire pixel counts over Southern China forecasted by our BPNN
ensembles for January 2013, 2014, and 2015, against those observed by
MODIS. The correlation coefficients between the forecasted and ob-
served daily fire pixel counts were 0.60, 0.77, and 0.80 for January
2013, 2014, and 2015, respectively. The MODIS-observed mean fire
pixel count in January 2013 was 13, which was much smaller than
those in January 2014 (100) and January 2015 (37). We found that this
difference was not entirely due to obstruction by clouds in January
2013, as the fraction of MODIS-sampled pixels covered by clouds were
both 13% in January 2013 and 2015. Moreover, the fraction of MODIS-
sampled pixels covered by clouds in January 2009 was also 13%, but
the fire pixel count in January 2009 was 94, much higher than the fire
pixel counts for either January 2013 or January 2015. Instead, the
lower fire pixel counts in January 2013 was at least partially due to a
cold growing season and delayed harvest. According to surface me-
teorological records and the NCEP FNL data, Southern China suffered
episodes of freezing rain and snow in early January 2013, and the re-
gional mean temperature was 1.9 °C colder than the climatology. As a

26
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——MODIS observations
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(c) 2015’
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25 30

Fig. 4. Comparison of the daily fire pixel counts over the Southern China do-
main as observed by MODIS (blue lines) and as forecasted by the BPNN en-
sembles (red lines and red shading areas indicate the means and the ranges of
the BPNN ensemble forecast, respectively) for January (a) 2013, (b) 2014, and
(c) 2015. Also shown are the MODIS-observed fire pixel count climatology for
January during the years 2003-2012 (green lines).

result, the harvest of late rice in 2013 were 2.7% lower than that in
2009 and 7.0% lower than that in 2015, according to the Guangdong
Statistical Yearbook of Agriculture (Xing et al., 2014). Our BPNNs
partially captured this interannual difference: the forecasted mean fire
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Comparison of the performances of BPNN ensembles in forecasting fire pixel counts over Southern China in January during the years 2013-2015.

MODIS observed daily fire pixel counts Full BPNN ensemble®

Sensitivity BPNN ensemble experiments”

RH_clim T_clim P_clim U_clim V_clim All_clim except RH®
2013 Monthly mean 13 46
RMSE [R]¢ 40.0 [0.6] 113 [0.39] 116 [0.04] 114 [0.11] 115[0.16] 115 [0.11] 122 [-0.28]
2014 Monthly mean 100 89
RMSE [R] 68.6 [0.77] 108 [0.29] 73.8 [0.72] 71.7 [0.75] 71.3 [0.76] 72.8 [0.75] 84.6 [0.73]
2015 Monthly mean 37 56
RMSE [R] 33.3 [0.80] 109 [0.43] 98 [0.47] 95.5 [0.47] 96.6 [0.47] 97.2 [0.45] 108 [0.33]

pixel counts over Southern China for January 2013, 2014, and 2015
were 46, 89, and 56, respectively.

In order to better understand the implicit relationships between the
daily surface meteorological conditions and fire activities, we con-
ducted sensitivity experiments where we replaced the daily values of
each of the five surface meteorological variables with their January
climatological values (averaged over 2003 to 2012) and re-trained the
BPNN ensembles. Table 2 compares the performances of the BPNN
ensembles from these sensitivity experiments. The performance of the
BPNN ensembles reduced dramatically when the day-to-day variability
of relative humidity was removed from the training dataset: the cor-
relation coefficients between the forecasted and MODIS-observed daily
fire pixel counts for January 2013, 2014, and 2015 decreased to 0.39,
0.29, and 0.43, respectively. This declination in performance was easy
to understand, as surface relative humidity has strong association with
precipitation and the dampness of crop residues and should be a
dominant predictor for fire activities. Surface relative humidity and
surface temperature often show a strong negative correlation. As a re-
sult, the performance of the BPNN ensembles both decreased in January
2013 and January 2015 when the daily variability of surface air tem-
perature was removed from the training dataset.

We found that the daily variability of surface pressure and hor-
izontal winds were also implicitly linked to the daily variability of fire
activities, although the mechanisms for such linkages remained unclear.
The correlations between the forecasted and MODIS-observed fire pixel
counts decreased significantly when the daily variability of surface
pressure, U-wind, or V-wind was removed, particularly for January
2013. In addition, the BPNN ensembles were unable to forecast the day-
to-day variability of fire pixel counts when driven only by the varia-
bility of relative humidity. We suspected that the variability of surface
pressure and horizontal winds may (1) partially represent the impacts
of short-term climate anomalies during the growing season, or (2) help
manifest the nonlinear dependencies between relative humidity, tem-
perature, and fire activities in the BPNNs.

Fig. 5 shows the spatial distributions of primary elemental carbon
emissions from biomass burning as forecasted by our BPNN ensembles
on three individual days in January 2014, as well as those given by
FINN and by the January climatology of FINN. Our forecasted daily
biomass burning emissions reflected not only the day-to-day variability
of emission strengths, but also the relative changes in spatial patterns.
For example, on January 3rd’ 2014, FINN (based on MODIS-observed
fire pixels) indicated more biomass burning emissions over northern
Guangdong but less in western Guangdong and eastern Guangxi. In
contrast, on January 23rd’ 2014, FINN indicated relatively more bio-
mass burning emissions over western Guangdong and eastern Guangxi.
These relative changes in pollutant emissions were reproduced by our
BPNN ensemble forecasts. On January 8th’ 2014, FINN indicated very
little biomass burning emissions across Southern China, which was also
reproduced by our BPNN ensemble forecasts. These relative changes in
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The full BPNN ensembles were trained using the daily values of all five surface meteorological variables (T, P, RH, U, and V).

The sensitivity BPNN ensembles were trained by setting the daily values of select meteorological variables to their January climatology values.

Only the daily values of RH were used to train the BPNN ensembles. The values of all other meteorological variables were set to their climatological values.
Root mean square error (RMSE) and correlation coefficient (R, shown in square brackets) against the MODIS observations.

the temporal and spatial distributions of pollutant emissions have large
impacts on the local air quality and were not reflected in the climato-
logical January emission from FINN.

4. Application to daily PM, 5 forecasts over southern China in
January 2014 and January 2015

Finally, we conducted sensitivity simulations using different bio-
mass burning emissions, with the goal of evaluating the performance of
our BPNN-ensemble predicted biomass burning emissions in air quality
forecasts. Fig. 6a shows relative difference between the mean surface
PM, 5 concentrations from the “FINN_2014” case and those from the
“NO_BB” case, which represents the fraction of simulated surface PM, 5
concentrations resulting from biomass burning emissions during Jan-
uary 2014. Biomass burning emissions accounted for more than 40% of
the simulated mean surface PM,s concentrations over northern
Guangdong, eastern Guangxi, and southern Hunan, indicates that the
locations of croplands and thus crop residue burning activities in these
areas.

Fig. 6b, ¢, and 6d compare the spatial distribution of the PM, 5
concentrations simulated by the three sensitivity experiments against
the surface PM, 5 measurements over Southern China for January 4th to
31st, 2014. In all three experiments, the model simulated PM, 5 con-
centrations exceeding 100 ug m ™2 in the central Pearl River Delta area,
mainly reflecting the strong anthropogenic emissions from the mega-
cities in the vicinity. In both the FINN_2014 and the BPNN_2014 ex-
periments, high concentrations of PM, s were also simulated over
northern Guangdong, eastern Guangxi, and southern Hunan, reflecting
the impacts of biomass burning. In particular, both simulations were
able to reproduce the enhancements in PM,s concentrations near
Shaoguan (northern Guangdong) and Guilin (eastern Guangxi). In
contrast, in the FINN_MEAN experiment, the PM, 5 concentration en-
hancements were much weaker in the main biomass burning areas, and
the high PM, 5 concentrations measured at Shaoguan and Guilin were
not reproduced.

Fig. 7 further compares the observed and simulated PM, s con-
centrations at the two surface sites most impacted by biomass burning:
Shaoguan and Guilin. At both sites, the omission of biomass burning
emissions (NO_BB experiment) led to severe low biases in the simulated
PM, s concentrations relative to the measurements, particularly during
two main burning periods: January 4th to 8th and January 25th to
29th, 2014. At Shaoguan, with the exception of a few days between
January 19th to 21st, 2014, both the FINN_2014 and the BPNN_2014
experiments were able to simulate the observed PM, 5 concentrations
better than the FINN_MEAN experiments. At Guilin, both the
FINN_2014 and the BPNN_2014 experiments out-performed the
FINN_MEAN experiment throughout January 2014.

Table 1 compares the average simulated PM,s concentrations
sampled at the 22 surface sites from the sensitivity experiments, as well
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as the corresponding normalized mean biases (NMB) relative to the
measurements during January 2014. The average PM, s concentration
measured at the 22 surface sites during January 4th to 31st, 2014 was
78.2ug m ™~ 3. The simulated PM, 5 concentrations (sampled at the sur-
face sites) in the FINN_2014 experiment averaged 72.1 ug m ™3, which
was 7.9% lower than the measurements. As mentioned before, the
FINN_2014 experiment represented the best-case scenario in a hindcast.
However in reality, the most common approach taken by air quality
forecasts was represented by the FINN_MEAN experiment, where the
simulated PM, 5 concentrations averaged 71.1 ug m ™3, 9.1% lower than
the measurements. In contrast, when WRF-Chem was driven by our
forecasted daily biomass burning emissions (BPNN_2014 experiment),
the average simulated PM, 5 concentration sampled at the surface in-
creased to 77.3pgm ™3, only 1.2% lower than the measurements. A
similar set of sensitivity simulation were conducted for January 2015
(Table S2). We also found a modest improvement in the forecasted daily
surface PM, 5 concentrations when using the forecasted daily biomass
burning emissions (BPNN_2015 experiment, NMB = —2.0%), com-
pared to the experiment using the climatological biomass burning
emissions (FINN_MEAN experiment, NMB = —5.8%). We thus con-
cluded, from the analyses of Figs. 6 and 7, Table 1 and Table S2, that
the use of our BPNN-ensemble daily biomass burning emission forecasts
greatly improved the overall accuracy of the surface PM, 5 concentra-
tion forecasts over Southern China in January, to the extent comparable
to having explicit satellite-based fire observations to constrain the daily
biomass burning emissions in a hindcast (i.e., FINN_2014 and
FINN_2015 experiments).

5. Conclusions

We developed BPNN ensembles to forecast daily fire pixel counts
over Southern China in January, with the goal of forecasting the day-to-
day variability of emissions from the burning of biomasses (mainly crop
residues), as well as improving the accuracy of PM, 5 forecasts in this
region. We used a decade's worth (2003-2012) of MODIS-observed
daily fire pixel counts and assimilated daily surface meteorological data
to train the BPNN ensembles. The resulting BPNN ensembles were able
to forecast the day-to-day variability of the fire pixel counts over
Southern China in January, with correlation coefficients against daily
MODIS observations of 0.6-0.8 for the years 2013-2015. In addition,
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the BPNN ensembles were able to capture the interannual variability of
fire pixel counts over Southern China, which likely reflected the im-
pacts of interannual climate variability on the local crop harvest.

We used the forecasted daily fire pixel counts to scale the climato-
logical January biomass burning emissions from FINN and applied the
resulting forecasted daily biomass burning emissions to drive the WRF-
Chem model. We found that the use of this daily biomass burning
emission forecast led to significant improvements in the accuracy of the
daily PM, s forecasts in Southern China for January 2014, reducing the
mean bias against surface PM, 5 measurements from —9.1% to —1.2%.
Similar improvements in the daily PM, s forecasts were also found for
January 2015, with the mean bias against surface measurements re-
duced from —5.8% to —2.0%. We thus concluded that the BPNN en-
semble approach show significant skills in forecasting biomass burning
emissions over Southern China, to the extent comparable to having
explicit satellite-based fire observations.

6. Discussions

Our use of BPNNs to forecast the spatial and temporal variability of
biomass burning emissions can be applied to other source regions. In
theory, the BPNN ensemble may even potentially out-perform the sa-
tellite-based fire observations in representing fire activities. This is
because satellite instruments cannot detect surface fires in pixels ob-
scured by clouds. In contrast, given a sufficiently large training dataset,
the BPNN ensembles can potentially learn to forecast fires based on the
surface meteorological conditions, even at pixels obscured by clouds.
This represents a potential advantage of the BPNN approach over the
satellite observations but of course needs to be thoroughly validated
with detailed surface fire observations. Other emerging satellite-based
fire products, such as hourly surface hot spots from the Chinese FY-4A
or the Japanese Himawari-8 geostationary satellites, may be explored
to forecast surface fire activities at even higher temporal resolution. The
use of BPNN or other machine learning techniques in forecasting pol-
lutant emissions and air quality shows promise and warrants further
investigation.
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