
1.  Introduction
As one of the most severe environmental issues apace with urbanization, air pollution poses significant threats to 
public health and the ecosystem in populous Asia. Emissions of air pollutants and their precursors respond differ-
ently to urbanization (Ding et al., 2015; Geddes et al., 2016; Li et al., 2016; Sinha & Bhattacharya, 2016). For 
example, the response of SO2 to urbanization (indicated by per-capita income) is an inverted U-shaped pattern 
(Stern,  2004), while PM2.5 responses to urbanization (indicated by time) in a linear manner (van Donkelaar 
et  al.,  2015), neither has been found with clear drivers. The pattern for anthropogenic non-methane volatile 
organic compounds (NMVOCs) remains unclear in Asia, primarily due to uncertainties in the bottom-up esti-
mations of NMVOC emissions. Here, we use formaldehyde (HCHO) columns from the newly launched TROP-
Ospheric Monitoring Instrument (TROPOMI) satellite (Veefkind et al., 2012) as a proxy of NMVOC emissions, 
together with the Visible Infrared Imaging Radiometer Suite (VIIRS) (C. Cao et al., 2013) night-time light (NTL) 
data (Elvidge et al., 2017) and population density data (Doxsey-Whitfield et al., 2015) as measures of urbaniza-
tion, to explore how anthropogenic NMVOC emissions evolve with urbanization across Asian countries.

Anthropogenic NMVOCs are major precursors of particulate matter and surface ozone in the urban air (Jin & 
Holloway, 2015; Seinfeld & Pandis, 2012). That being said, anthropogenic NMVOC emissions in Asia increased 
from 50.8  TgC in 2010 to 55.5  TgC in 2017, contributing significantly (∼31%) to the global total emission 
(McDuffie et al., 2020). Urban NMVOCs in Asia are mainly emitted from industrial activities, transportation, 
and fuel use (Wang et al., 2014; Wei et al., 2011). Recently, anthropogenic NMVOC emissions are ramping up 
rapidly due to automobile, solvent, and paint usage (Kurokawa et al., 2013; Ohara et al., 2007).
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Satellite HCHO columns have been widely used as a proxy of anthropogenic NMVOC emissions (Boeke 
et al., 2011; Fu et al., 2007; H. Cao et al., 2018; Souri et al., 2020; Stavrakou et al., 2015; Sun et al., 2021; Zhu, 
Jacob, et al., 2017; Zhu et al., 2020), because of the short atmospheric lifetime of HCHO (a few hours against 
oxidation and photolysis) and relatively high HCHO production yields from the oxidation of various highly reac-
tive anthropogenic NMVOCs. In addition, satellite HCHO columns are sensitive to biogenic isoprene and mono-
terpenes emissions (Barkley et al., 2013; Curci et al., 2010; Millet et al., 2006, 2008; Palmer et al., 2003; Shim 
et al., 2005), with air temperature as the primary driver of the seasonal variations in HCHO columns (Duncan 
et al., 2009; Kaiser et al., 2018; Palmer et al., 2006; Zhu et al., 2014; Zhu, Mickley, et al., 2017). In this study, 
we use TROPOMI HCHO columns to probe the relationship between anthropogenic NMVOC emissions and 
urbanization in Asia at a high spatial resolution, as discussed below.

2.  Data and Method
2.1.  TROPOMI HCHO Columns

As a nadir-viewing hyperspectral spectrometer, TROPOMI is onboard the Copernicus Sentinel-5 Precursor plat-
form, launched in October 2017. TROPOMI provides daily global coverage with a high spatial resolution of 
7.0 × 3.5 km 2 (upgraded to 5.5 × 3.5 km 2 since August 2019) and signal-to-noise ratio (Veefkind et al., 2012) 
at a local cross-time of 13:30. TROPOMI HCHO product (De Smedt et  al.,  2018,  2021) has been validated 
against observations from the Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) (Chan 
et al., 2020) and Fourier-transform infrared (FTIR) (Vigouroux et al., 2020) instruments. Meanwhile, intercom-
parison with Ozone Monitoring Instrument (OMI) monthly averaged HCHO columns suggests the retrieval 
consistency between OMI and TROPOMI (De Smedt et al., 2021). Therefore, TROPOMI HCHO products have 
been gradually applied to identify the sources of volatile organic compounds (VOCs) (Pakkattil et al., 2021; Xing 
et al., 2020) and their variations (Sun et al., 2021).

To ensure data quality, we use TROPOMI HCHO data from May–October (in 2018 and 2019), when HCHO 
columns are higher and satellite light paths are shorter. TROPOMI level-2 pixels are filtered based on cloud frac-
tions (<30%), solar zenith angles (<60°), and quality assurance value (>0.5). We then regrid all qualified level-2 
pixels during May–October in 2018 and 2019 onto the 0.05° × 0.05°(∼5 × 5 km 2) grids, built on our previous 
oversampling method (Sun et al., 2021; Zhu et al., 2014; Zhu, Jacob, et al., 2017; Zhu, Mickley, et al., 2017).

As shown in Figure 1 (panel a), the elevated HCHO columns over northern India and eastern China emphasize 
the significant impact of biogenic NMVOCs on the regional scale (H. Cao et al., 2018; Surl et al., 2018). We also 
see relatively high HCHO columns over urban areas in Asia, such as the Indo-Gangetic Plain, North China Plain, 
Pearl River Delta, and Hanoi, highlighting contributions from anthropogenic NMVOC emissions. This is due 
partly to NMVOC emissions from industrial activities and transportation, which account for more than 45% of 
the total NMVOC emissions in China and has been growing fast in India (Kurokawa et al., 2013).

2.2.  VIIRS NTL Radiance

Previous studies have used NTL data as an indicator of urbanization, such as urban area expansion (Elvidge 
et  al.,  1999; Sutton,  2003) and economic development (Chen & Li,  2019; Levin & Duke,  2012; Levin & 
Zhang, 2017; Zhao et al., 2017). Following the annual composite approach suggested by Zhang et al. (2021), we 
compute the median of VIIRS monthly NTL radiance (Elvidge et al., 2017) in 2019 on the Google Earth Engine 
platform (Gorelick et al., 2017), and use it to measure urbanization levels in Asia (Figure 2a). Here, we use the 
median radiance to remove outliers introduced by wildfires.

High HCHO columns (Figure  1a) generally collocate with areas indicated by relatively high NTL radiance 
(Figure 2a), implying that human economic activities and NMVOC emissions are closely related. For instance, 
the developed eastern and coastal regions emit more NMVOCs than the less developed western and inland regions 
in China (Li et al., 2016), similar to the NTL spatial pattern in Figure 2a.

2.3.  Spatial Sampling Method

To focus on anthropogenic NMVOCs, we select grid cells where (a) HCHO columns weakly depend on air 
temperature and (b) are not influenced by wildfires. The first criterion is to filter out biogenic-dominated grid 
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cells. This is conducted by utilizing the exponential dependency of biogenic 
HCHO columns on air temperature (Duncan et al., 2009; Zhu et al., 2014; 
Zhu, Mickley, et al., 2017). Here we use NASA Modern-Era Retrospective 
Analysis for Research and Applications-2 (MERRA-2) (Gelaro et al., 2017) 
surface temperature to build localized exponential temperature dependency of 
HCHO columns (Figures 1b and 1c). We then exclude grid cells with strong 
biogenic influence (R 2 > 0.5 and A > 0.05) from further analysis. R 2 > 0.5 
indicates a strong correlation between surface temperature and HCHO 
columns, and A  >  0.05 indicates HCHO column significantly depends on 
surface temperature, either suggesting strong biogenic influence. Finally, we 
eliminate grid cells influenced by wildfire based on carbon monoxide emis-
sion flux (>1 × 10 −6 kg m −2 yr −1) from the Global Fire Emissions Database 
4 (GFED 4) (van der Werf et al., 2017) in 2019.

To focus on urban areas, we limit our further analysis to previously resulting 
grid cells containing at least one urban site. Here we survey 37,320 urban 
sites in Asia based on the geolocation of administrative, residential, and 
commercial centers, following Zhang et al.  (2021). The accuracy (96%) of 
the defined urban sites is verified by visually checking randomly selected 
500 sites against corresponding high-resolution Google Earth images. From 
Figure 2b, we see that urban sites are generally located at grid cells with high 
NTL radiance, supporting using NTL radiance as a measure of urbanization.

3.  Results and Discussions
Our analysis begins with the relationship between anthropogenic NMVOC 
emissions (indicated by TROPOMI HCHO columns) and urbanization (indi-
cated by NTL radiance and population density) within each major Asian 
country (hereafter defined as countries with more than 200 urban sites 
defined in Section 2.3). Figure 3 demonstrates a significant (p-value ≤ 0.05) 
positive correlation between TROPOMI HCHO columns and the NTL radi-
ance in Japan, Indonesia, the Philippines, and India, the top four countries 
with the highest correlation coefficients. In total, we find significant linear 
relationships in 19 of 24 major Asian countries, with correlation coefficients 
(r) ranging from 0.64 to 0.99 (Table S1 in Supporting Information S1). Simi-
larly, TROPOMI HCHO columns correlate closely with population density 
in major Asian countries (0.70 ≤  r ≤ 0.99), due to the linear relationship 
between NTL radiance and population density (0.76 ≤ r ≤ 0.99).

We also explore the relationship between TROPOMI HCHO columns and 
bottom-up anthropogenic VOC emissions within major Asian countries using 
the Emissions Database for Global Atmospheric Research (EDGAR) inven-
tory (Huang et  al.,  2017). Following the mass balance approach proposed 
by Palmer et al. (2003) and Zhu et al. (2014), we select five highly reactive 
VOCs (ethene, propene, isoprene, monoterpenes, and HCHO) with atmos-
pheric lifetimes shorter than 2 hr (Table S2 in Supporting Information S1) 
to roughly estimate EDGAR-based HCHO columns based on local emission 
fluxes. The moderate-to-high linear relationships (0.65  ≤  r  ≤  0.89; Table 
S1 in Supporting Information S1) between EDGAR-based and TROPOMI 
HCHO columns confirm the reliability of satellite HCHO columns as a proxy 

of anthropogenic NMVOC emissions among countries, acknowledging the potential underestimation of HCHO 
produced by long-lived NMVOCs.

The linear relationships between EDGAR-based and TROPOMI HCHO columns also imply a way to identify 
possible drivers of the differences in TROPOMI HCHO and NTL radiance (and population density) relationship 

Figure 1.  TROPOMI HCHO columns and temperature dependency over Asia. 
Panel (a) shows TROPOMI HCHO columns during May–October in 2018 and 
2019 oversampled to a 0.05° × 0.05° (∼5 × 5 km 2) grid resolution. Panel (b) 
shows the temperature dependency (determination coefficient, R 2) between 
monthly HCHO columns (Ω, in molecules cm −2) and surface temperature (T, 
in K), calculated by fitting an exponential relationship (log10 Ω = AT + B, 
where A and B are fitting parameters) with data during May–October in 2018 
and 2019. T is from MERRA-2 surface temperature (Gelaro et al., 2017). To 
obtain reliable statistics, Ω and T are regridded to a 2° × 2° grid resolution 
before the fitting. Panel (c) shows slope (A) fitted with the aforementioned 
exponential relationship.
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among Asian countries (Figure 1; Table S1 in Supporting Information S1) by examine contributions from various 
species and sectors (Table S3 in Supporting Information S1). For instance, Japan has a much higher correlation 
coefficient (0.99) than Bangladesh (0.77). We hypothesize such a difference is caused by different contributions 
from emission sectors (Table S3 in Supporting Information S1), including industry (74% vs. 41%), residential 

Figure 2.  Annual night-time light (NTL) radiance over Asia according to VIIRS. Panel (a) shows VIIRS annual NTL radiance in 
2019 at a resolution of 0.05° × 0.05° (∼5 × 5 km 2), computed based on the median synthesis method provided by the Google Earth 
Engine. Panel (b) zooms in a region near Beijing-Tianjin-Hebei urban agglomeration, the red box in panel (a). Red dots are urban 
sites defined as administrative (province, city, and county domains), residual, and commercial centers (details in Section 2.3).

Figure 3.  The relationship between HCHO columns and VIIRS NTL radiance. Panels (a–d) indicates Japan, Indonesia, the 
Philippines, and India in order. In each panel, a point represents the mean HCHO columns at a specific NTL radiance bin for 
all urban grid cells (defined in Section 2.3) within that country. The blue line shows the simple linear regression line, with a 
gray area enveloping the 95% confidence interval of the mean response. Pearson correlation coefficients (r) are also inserted. 
The green dashed line represents the simple linear regression line after excluding the impact of spatial variations of NOx 
emissions on HCHO columns (details in Text S2 in Supporting Information S1).
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(4% vs. 23%), and agriculture (5% vs. 16%) – NTL could be more likely relevant to industry rather than non-point 
residential and agriculture sources. Meanwhile, the slope discrepancy between Russia and Uzbekistan (Table S1 
in Supporting Information S1) may be traced to speciations of emitted VOCs. The lower slope in Russia could 
be driven by lower contributions of secondary production (49% vs. 99%; Table S3 in Supporting Information S1) 
from species with higher HCHO yields, including ethene, propene, and isoprene (Table S2 in Supporting Infor-
mation S1). Nevertheless, more concrete and mechanistic drivers deserve further studies.

To encapsulate the spatial complexity within a country, we compute the national-averaged TROPOMI HCHO 
columns, NTL radiance, and population density. We fit a log-linear regression, given the highly skewed NTL 
radiance (skewness 2.81) and population density data (skewness 19.5). Figures 4a and 4b show how anthropo-
genic NMVOC emissions (indicated by HCHO columns) vary with urbanization (indicated by NTL radiance 
and population density) on the national scale. The log-linear relationship is weak (r = 0.46, p-value = 0.02) 
between HCHO columns and NTL radiance, but much stronger between HCHO and population density (r = 0.73, 
p-value < 0.01).

Population growth in Asia results in higher demand for transportation, electricity, and solvent usage, all 
contributing to NMVOCs emissions and thus HCHO columns. However, such linearity is not necessarily 
reflected by examining the relationship between HCHO columns and NTL radiance (Figure 4c). This likely 
suggests population density as an overall indicator of NMVOCs emissions from industry, ground transport, 
and residential sectors, whereas NTL radiation is more relevant to electrical energy consumption (Chen & 
Li, 2019) than other sectors. Nevertheless, given the advantages of real-time updates, large scanning range, and 
quick response, satellite NTL radiance data still have great potential to characterize urbanization. Furthermore, 

Figure 4.  The response of HCHO columns to NTL radiance (panel a) and population density (panel b). The relationship 
between NTL radiance and population density (panel c), and between TROPOMI and EDGAR-based HCHO columns 
(panel d). Each point represents the national-averaged TROPOMI HCHO columns, NTL radiance, population density, or 
EDGAR-based HCHO columns for all urbanization grid cells (Section 2.3) in a specific country. The blue line is a log-linear 
(panels a and b) or linear (panels d) fitting, with the gray area enveloping the 95% confidence interval of the mean response. 
Pearson correlation coefficients (r) are also inserted (panels a, b, and d).
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the linearity between TROPOMI and EDGAR-based HCHO columns (r  =  0.61, p-value  <  0.01) confirms 
TROPOMI HCHO columns again as a reliable proxy of anthropogenic NMVOC emissions, at least on the 
national scale (Figure 4d).

Following the same approach, we analyze how anthropogenic NMVOC emissions vary with urbanization 
on the provincial scale in China (Figure S1 in Supporting Information  S1). China emits the most anthropo-
genic NMVOCs worldwide, accounting for ∼15% of the global total emission (Wei et al., 2011), with major 
emission sectors from solvent usage, industrial processes, road vehicles, and fuel combustion. Similar to the 
national relationship between anthropogenic NMVOC emissions and urbanization (Figures 4a and 4b), provin-
cial HCHO columns logarithmically depend on urbanization, with a higher correlation with population density 
(r = 0.75, p-value < 0.01) than NTL radiance (r = 0.28, p-value = 0.10). This implies a general linear pattern 
between anthropogenic NMVOC emissions and urbanization may exist, regardless of geographical differences. 
However, we may not be able to make quantitative predictions of such a linear trend in the future based on current 
observations.

The dependency of HCHO yields from NMVOCs on NOx emissions is nonlinear (Miller et al., 2017; Valin 
et al., 2016; Wolfe et al., 2016), thus complicating the relationships between anthropogenic NMVOC emis-
sions and HCHO columns. We conduct five GEOS-Chem (nested version, 0.5° × 0.625°) sensitivity simula-
tions (Text S1 in Supporting Information S1) along with using TROPOMI NO2 data (van Geffen et al., 2020; 
Text S2 in Supporting Information S1) to quantify such a dependency over Asia. We find that excluding 
anthropogenic NOx emissions, on average, reduces HCHO columns by up to ∼40% in Eastern Asia and by 
∼30% in Central Asia (Figure S2 in Supporting Information S1). We further quantify the impact of spatial 
variations of NOx emissions on HCHO columns (Text S2 in Supporting Information S1), and find that such 
an impact is slight in most Asia countries. For example, the slope is reduced by 3% in Japan, 19% in India, 
and 22% in Indonesia (Figure  3), after accounting for the spatial variations of NOx emissions. The larg-
est impact (36%) is seen in Malaysia. Therefore, we argue that linear patterns between TROPOMI HCHO 
columns and NTL radiance (Figures  3 and  4; Table S1 in Supporting Information  S1) may be primarily 
driven by gradients of NMVOC rather than NOx emissions. Nevertheless, we acknowledge that NOx and 
NMVOC emissions from various sectors may vary spatially, and localized HCHO-NMVOCs relationships 
deserve future exploration.

4.  Conclusion
We have used TROPOMI, VIIRS satellite observations, and population density data to explore how anthropogenic 
non-methane volatile organic compound (NMVOC) emissions evolve with urbanization in Asia. We find HCHO 
columns (an indicator of anthropogenic NMVOC emissions) correlate moderately to highly (0.64 ≤ r ≤ 0.99) 
with night-time light (NTL) radiance (an indicator of urbanization) within major Asian countries. TROPOMI 
HCHO column is confirmed as a reliable proxy of anthropogenic NMVOC emissions in Asia. Our study suggests 
a linear response between anthropogenic NMVOC emissions and urbanization in Asia currently, with no apparent 
turnover yet.

Data Availability Statement
The TROPOMI HCHO, NO2, and MERRA-2 products used in this study are from the NASA Goddard Earth 
Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/S5P_L2__HCHO___1/
summary?keywords=TROPOMI%20HCHO, https://disc.gsfc.nasa.gov/datasets/S5P_L2__NO2____HiR_1/
summary?keywords=NO2, and https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_5.12.4/summary?key-
words=MERRA-2). The VIIRS night light data are from NOAA National Centers for Environmental Information 
(NCEI) (https://ngdc.noaa.gov/eog/viirs/download_ut_mos.html). The population density data in 2015 are from 
the NASA Socioeconomic Data and Applications Center (SEDAC) (http://dx.doi.org/10.7927/H4ST7MRB). 
The EDGAR data are from European Union Joint Research Centre (https://edgar.jrc.ec.europa.eu/dataset_
htap_v3). Oversampling code and plotting scripts are available at: https://zenodo.org/record/6843869%23.
YtJMLXZByUk.
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