Personal tools
User menu

Difference between revisions of "Research underconstruction"

From atmoschem

Jump to: navigation, search
(Sources of Chinese air pollutants)
(Sources of Chinese air pollutants)
Line 7: Line 7:
  
  
{{Box|type=blue_light|text=Constraining the sources of carbonaceous aerosols in the PRD region}}
+
{{Box|type=l_blue_light|text=Constraining the sources of carbonaceous aerosols in the PRD region}}
  
  

Revision as of 08:39, 25 April 2014

Contents

Current projects

Sources of Chinese air pollutants

Team members: Nan LI, Yue JIAN, Heng TIAN, Hansen CAO, Tzung-May FU


Constraining the sources of carbonaceous aerosols in China


Constraining the sources of carbonaceous aerosols in the PRD region


Constraints on the historical black carbon emissions from China (1850-2000)


text to hide

text to hide

another line

another line


Constraining the sources of carbonaceous aerosols in the PRD region


Constraints on the historical black carbon emissions from China (1850-2000)

Volatile organic compounds (VOCs): global and regional emissions and impacts

Team members: Hansen CAO, Heng TIAN

Secondary organic aerosols (SOA)

Team members: Nan LI, Li XING, Tzung-May FU


Sources of SOA in the PRD region


Organic matter to organic carbon mass ratio in Chinese urban aerosols


A three-moment parameterization scheme for SOA


Chemistry-Climate interactions

Team members: Jinxuan CHEN, Yaping MA, Wanying KANG, Aoxing ZHANG

Measurements of Chinese PM2.5 composition

Team members: Wei XU, Jinxuan CHEN, Heng TIAN, Aoxing ZHANG


Air-sea exchange of organic matters

Team members: Cenlin HE, Tzung-May FU


Constraining sources of pollutants using in situ and remote sensing observations

Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution

Carbonaceous aerosols in the Pearl River Delta region

Space-based constraints on volatile organic compound emissions in China

Constraining the sources of carbonaceous aerosols in China


Constraining the sources of carbonaceous aerosols in China aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa



Group.jpg

[ Open Urban]

Skin: GoMediaWiki free skin

OpenUrban is a place to share information and ideas on current and proposed urban development. Specifically, it is the first user-generated web map and forum focusing on this issue.

Constraining Asian volatile organic gases emissions using space-based observations=

Team member: Hansen CAO


Understanding the climate change penalty on air quality

Team member: Jinxuan CHEN, Wanying KANG, Aoxing ZHANG, Yiqi ZHENG


Quantifying the climate impact of organic aerosols

Team member: Nan LI


Developing a physics-based parameterization scheme for organic aerosol size evolution

Team member: Li XING


Constraining historical black carbon emissions in China (1850-2000)

Team member: Yue JIAN


Accounting for the impacts of the subgrid variability of RH on aerosol optical depth in large-scale models

Team member: Ye QING


Mapping volatile organic compound emissions using formaldehyde measurements from satellites

Volatile organic compounds (VOC) is an important class of atmospheric constituents, impacting the production of ozone, the oxidation power of the atmosphere, the lifetime of other green house gases and pollutants, and the production of organic aerosols.

VOCs are emitted into the atmosphere from both natural and anthropogenic activities, and quantifying these many overlapping sources can be a challenge. We use satellite observations of formaldehyde (HCHO), an oxidation product of many VOCs, to make 'top-down' estimates of VOC emissions from each source.

Publication: Fu et al. [2007], Millet et al. [2007], Palmer et al. [2006]

Team member: Hansen CAO, Heng TIAN


Understanding the sources and production mechanisms of organic aerosols

Secondary organic aerosols (SOA) are the organic mass transferred into the particulate phase in the atmosphere. Many recent observations have found SOA concentrations to be much higher than can be explained by current models in most parts of the atmosphere.

Using a global 3-D atmospheric chemistry model, we investigate the missing source of SOA. In particular, we find that the heteorogeneous uptake of dicarbonyls in aeorsols and clouds can help explained the observed SOA concentrations and variability.

Publication: Fu et al., [2009], Fu et al. [2008], Henze et al. [2008], van Donkelaar et al. [2007]

Team member: Li XING


Constraining the global budget of atmospheric oxygenated organics

Oxygenated VOCs (OVOCs), including acetone, methanol, etc, are present in high concentrations throughout the atmosphere. Their abundance and distribution have large impacts on the oxidation power of the troposphere, particularly in remote regions.

The budgets of OVOCs are not well understood. One of the major sources of uncertainty is whether the ocean acts as a source or a sink to the atmosphere. The air/sea exchange is complexly regulated by both physical and biological conditions at the interface. We propose a new air/sea transfer module to account for these physical and biological processes, including the presence of microfilms, production/consumption of organic matter by marine life, and other photochemical processes.

Team member: Hansen CAO, Cenlin HE

Completed projects

Impacts of smoke plume injection heights over the Peninsular Southeast Asia on pollutant long-range transport

Team member: Yue JIAN